[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A131269
a(n) = 3*a(n-1) - 2*a(n-2) - a(n-3) + a(n-4) with n>3, a(0)=1, a(1)=2, a(2)=3, a(3)=6.
7
1, 2, 3, 6, 11, 20, 35, 60, 101, 168, 277, 454, 741, 1206, 1959, 3178, 5151, 8344, 13511, 21872, 35401, 57292, 92713, 150026, 242761, 392810, 635595, 1028430, 1664051, 2692508, 4356587, 7049124, 11405741, 18454896, 29860669, 48315598, 78176301, 126491934
OFFSET
0,2
COMMENTS
Row sums of triangles A131268 and A131270.
a(n)/a(n-1) tends to phi (A001622).
FORMULA
a(n) = a(n-2) + a(n-1) + n - 2 with n>1, a(0)=1, a(1)=2. - Alex Ratushnyak, May 02 2012
From Bruno Berselli, May 03 2012: (Start)
G.f.: (1-x-x^2+2*x^3)/((1-x-x^2)*(1-x)^2). - Bruno Berselli, May 03 2012
a(n) = A001595(n+1) - n = A006355(n+3) - n - 1 = ((1+sqrt(5))^(n+2) - (1-sqrt(5))^(n+2))/(2^(n+1)*sqrt(5))-n-1. (End)
EXAMPLE
a(4) = 11 = sum of row 4 terms of triangle A131268: (1 + 1 + 5 + 3 + 1), or the reversed terms of triangle A131270, row 4.
MATHEMATICA
LinearRecurrence[{3, -2, -1, 1}, {1, 2, 3, 6}, 41] (* Bruno Berselli, May 03 2012 *)
Table[2*Fibonacci[n+2]-n-1, {n, 0, 40}] (* G. C. Greubel, Jul 09 2019 *)
PROG
(Python)
prpr = 1
prev = 2
for n in range(2, 99):
current = prpr + prev + n - 2
print(prpr, end=', ')
prpr = prev
prev = current # Alex Ratushnyak, May 02 2012
(PARI) Vec((1-x-x^2+2*x^3)/((1-x-x^2)*(1-x)^2)+O(x^40)) \\ Bruno Berselli, May 03 2012
(PARI) vector(40, n, n--; 2*fibonacci(n+2)-n-1) \\ G. C. Greubel, Jul 09 2019
(Magma) /* By the first comment: */ [&+[2*Binomial(n-Floor((k+1)/2), Floor(k/2))-1: k in [0..n]]: n in [0..40]]; /* Bruno Berselli, May 03 2012 */
(Magma) [2*Fibonacci(n+2)-n-1: n in [0..40]]; // G. C. Greubel, Jul 09 2019
(Maxima) makelist(expand(((1+sqrt(5))^(n+2)-(1-sqrt(5))^(n+2) )/(2^(n+1)*sqrt(5))-n-1), n, 0, 40); /* Bruno Berselli, May 03 2012 */
(Sage) [2*fibonacci(n+2)-n-1 for n in (0..40)] # G. C. Greubel, Jul 09 2019
(GAP) List([0..40], n-> 2*Fibonacci(n+2)-n-1); # G. C. Greubel, Jul 09 2019
CROSSREFS
Cf. A001595 (first differences).
Sequence in context: A285553 A242842 A327665 * A358027 A090167 A352500
KEYWORD
nonn,easy,changed
AUTHOR
Gary W. Adamson, Jun 23 2007
EXTENSIONS
Better definition and more terms from Bruno Berselli, May 03 2012
STATUS
approved