[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130707
a(n+3) = 3*(a(n+2) - a(n+1)) + 2*a(n).
3
1, 2, 2, 2, 4, 10, 22, 44, 86, 170, 340, 682, 1366, 2732, 5462, 10922, 21844, 43690, 87382, 174764, 349526, 699050, 1398100, 2796202, 5592406, 11184812, 22369622, 44739242, 89478484, 178956970, 357913942, 715827884, 1431655766, 2863311530
OFFSET
0,2
COMMENTS
Binomial transform of period-3 sequence with period 1 1 -1.
FORMULA
a(n) = 2^n/3 + 4*(-1)^n*(1/3)*cos((2n+1)*Pi/3). - Emeric Deutsch, Jul 27 2007
From R. J. Mathar, Nov 18 2007: (Start)
G.f.: (-1+x+x^2)/(2*x-1)/(x^2-x+1).
a(n) = (2*A057079(n) + 2^n)/3. (End)
MAPLE
a:=proc(n) options operator, arrow: (1/3)*2^n+(4/3)*(-1)^n*cos((1/3)*(2*n+1)*Pi) end proc: seq(a(n), n = 0 .. 33); # Emeric Deutsch, Jul 27 2007
MATHEMATICA
RecurrenceTable[{a[0]==1, a[1]==a[2]==2, a[n]==3(a[n-1]-a[n-2])+2a[n-3]}, a, {n, 40}] (* or *) LinearRecurrence[{3, -3, 2}, {1, 2, 2}, 40] (* Harvey P. Dale, Jan 18 2015 *)
CROSSREFS
Sequence in context: A360314 A213270 A307522 * A131562 A260786 A374663
KEYWORD
nonn
AUTHOR
Paul Curtz, Jul 01 2007
EXTENSIONS
More terms from Emeric Deutsch, Jul 27 2007
STATUS
approved