[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A130578
Number of different possible rows (or columns) in an n X n crossword puzzle.
14
0, 0, 1, 3, 6, 10, 16, 26, 43, 71, 116, 188, 304, 492, 797, 1291, 2090, 3382, 5472, 8854, 14327, 23183, 37512, 60696, 98208, 158904, 257113, 416019, 673134, 1089154, 1762288, 2851442, 4613731, 7465175, 12078908, 19544084
OFFSET
1,4
COMMENTS
The number of linear arrangements of n black and white squares subject to the conditions that there must be at least one run of white squares and all runs of white squares must be of length at least three.
Crossword puzzles such as those in the New York Times do not include one-letter or two-letter words. Since the daily NYT puzzle is 15 X 15, there are a(15) = 797 different possible arrangements for each row.
LINKS
Fumio Hazama, Spectra of graphs attached to the space of melodies, Discr. Math., 311 (2011), 2368-2383. See Table 2.1.
FORMULA
Recurrence: a[n + 4] = 2 a[n + 3] - a[n + 2] + a[n] + 1, with a[1] = 0, a[2] = 0, a[3] = 1, a[4] = 3.
Formula: a[n] = (30 - 30*Sqrt[5] - 30*(1/2 - Sqrt[5]/2)^n + 12*Sqrt[5]*(1/2 - Sqrt[5]/2)^n + 15*(1/2 + Sqrt[5]/2)^n + 3*Sqrt[5]*(1/2 + Sqrt[5]/2)^n - 15*Cos[(n*Pi)/3] + 15*Sqrt[5]*Cos[(n*Pi)/3] + 5*Sqrt[3]*Sin[(n*Pi)/3] - 5*Sqrt[15]*Sin[(n*Pi)/3])/(30*(-1 + Sqrt[5])
O.g.f.: x^3/((-1+x)*(x^2+x-1)*(x^2-x+1)) . - R. J. Mathar, Nov 23 2007
a(n) = A005252(n+1) - 1. - R. J. Mathar, Nov 15 2011
G.f.: Q(0)*x^2/(2-2*x), where Q(k) = 1 + 1/(1 - x*( 4*k+2 -x +x^3)/( x*( 4*k+4 -x +x^3) +1/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 07 2014
EXAMPLE
a(5) = 6 because using 0's for white squares and 1's for black, the possible rows are: 00011, 10001, 11000, 00001, 10000, 00000.
MATHEMATICA
possiblerows = {}; For[n = 1, n <= 36, n++, table = Table[{n, k, Coefficient[(x^0 + Sum[x^i, {i, 3, n - k}])^(k + 1), x, n - k]}, {k, 0, n}]; total = Sum[table[[j, 3]], {j, 1, n}]; possiblerows = Append[possiblerows, total]; totalstable = Table[{t, possiblerows[[t]]}, {t, 1, Length[ possiblerows]}]]; TableForm[totalstable, TableHeadings -> {None, {" n = squares", "total number of permissible rows"}}]
PROG
(Haskell)
a130578 n = a130578_list !! (n-1)
a130578_list = 0 : 0 : 1 : 3 : zipWith (+)
(map (* 2) $ drop 3 a130578_list)
(zipWith (-) (map (+ 1) a130578_list) (drop 2 a130578_list))
-- Reinhard Zumkeller, May 23 2013
(PARI) a(n)=([0, 1, 0, 0, 0; 0, 0, 1, 0, 0; 0, 0, 0, 1, 0; 0, 0, 0, 0, 1; -1, 1, 1, -3, 3]^n*[0; 0; 0; 1; 3])[1, 1] \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
Sequence in context: A265073 A265074 A054886 * A107068 A033541 A038505
KEYWORD
nonn,easy
AUTHOR
Marc A. Brodie (mbrodie(AT)wju.edu), Aug 10 2007, Aug 24 2007
STATUS
approved