[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (5^p - 3^p - 2^p)/p, where p = prime(n).
4

%I #12 Jun 08 2021 07:57:57

%S 6,30,570,10830,4422630,93776970,44871187170,1003806502230,

%T 518297165370030,6422911941109705770,150213298561349961630,

%U 1966475018690546370358170,1109139879321302763891656370

%N a(n) = (5^p - 3^p - 2^p)/p, where p = prime(n).

%C p divides 5^p - 3^p - 2^p = A130072(p) for prime p.

%C p^(k+1) divides A130072(p^k) for prime p = {2,3,5,19} = A130076(n) and all k>0.

%C 2 divides a(n). 3 divides a(n). 5 divides a(n) for n>1. 19 divides a(n) for n>2. 19^2 divides a(n) for n in A091178(n) or prime(n) in A002476.

%F a(n) = (5^prime(n) - 3^prime(n) - 2^prime(n))/prime(n).

%F a(n) = A130072(prime(n))/prime(n).

%t Table[(5^Prime[n]-3^Prime[n]-2^Prime[n])/Prime[n],{n,1,20}]

%t (5^#-3^#-2^#)/#&/@Prime[Range[20]] (* _Harvey P. Dale_, May 02 2012 *)

%Y Cf. A130072, A130073, A130074, A130076, A091178, A002476.

%K nonn

%O 1,1

%A _Alexander Adamchuk_, May 06 2007