[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139823
Decimal expansion of constant c = Sum_{n>=0} C(1/2^n, n).
4
1, 4, 3, 0, 6, 3, 4, 5, 2, 4, 3, 6, 1, 1, 6, 8, 6, 5, 7, 0, 6, 6, 1, 8, 0, 3, 3, 7, 5, 5, 9, 0, 2, 9, 5, 5, 4, 7, 0, 6, 8, 7, 3, 0, 9, 8, 5, 0, 5, 3, 9, 8, 7, 9, 1, 7, 6, 0, 7, 5, 5, 4, 5, 8, 9, 2, 6, 8, 9, 4, 6, 7, 1, 8, 1, 4, 9, 9, 5, 5, 8, 2, 1, 5, 4, 3, 6, 5, 4, 4, 9, 2, 6, 2, 1, 8, 6, 6, 8, 1, 3, 4, 3, 7, 1
OFFSET
1,2
LINKS
FORMULA
c = Sum_{n>=0} log(1 + 1/2^n)^n/n! .
EXAMPLE
c = 1.43063452436116865706618033755902955470687309850539879176075545...
c = 1 + 1/2 - 3/32 + 35/1024 - 7285/524288 + 1570863/268435456 -+...
c = 1 + log(3/2) + log(5/4)^2/2! + log(9/8)^3/3! + log(17/16)^4/4! +...
The formulas for this constant illustrate the identity:
Sum_{n>=0} log(1 + q^n*x)^n*y^n/n! = Sum_{n>=0} binomial(q^n*y, n)*x^n.
MATHEMATICA
RealDigits[Total[Table[Binomial[1/2^n, n], {n, 0, 1000}]], 10, 120][[1]] (* Harvey P. Dale, Nov 13 2014 *)
PROG
(PARI) a(n)=local(c=sum(m=0, n, log(1+1/2^m)^m/m!)); floor(c*10^n)%10
CROSSREFS
Sequence in context: A251610 A021703 A321209 * A307087 A019756 A154156
KEYWORD
cons,nonn
AUTHOR
Paul D. Hanna, May 01 2008
STATUS
approved