[go: up one dir, main page]

login
A139768
Numbers n such that (10^(n+1) mod 9^(n+1))/(10^n mod 9^n)=10, or A139739(n+1)/A139739(n)=10.
2
21, 38, 57, 58, 71, 81, 127, 148, 164, 181, 188, 195, 204, 208, 209, 212, 232, 244, 249, 250, 251, 252, 267, 269, 270, 300, 317, 326, 356, 357, 382, 398, 407, 409, 416, 417, 420, 447, 448, 453, 471, 479, 480, 481, 492, 502, 505, 528, 530, 548, 554, 561, 570
OFFSET
1,1
COMMENTS
Also, this is the set of numbers n such that 9*floor((10/9)^(n+1))==10*floor((10/9)^n) (cf. A065566). For proof see Mathar link.
MAPLE
Res:= NULL: count:= 0:
v:= 1:
for n from 2 while count < 100 do
u:= floor((10/9)^n);
if 9*u = 10*v then count:= count+1; Res:= Res, n-1 fi;
v:= u;
od:
Res; # Robert Israel, Jul 10 2018
CROSSREFS
Sequence in context: A224701 A050782 A061906 * A307278 A176071 A072708
KEYWORD
nonn
AUTHOR
Zak Seidov and N. J. A. Sloane, May 20 2008, May 24 2008
STATUS
approved