[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139492
Primes of the form x^2 + 5x*y + y^2 for x and y nonnegative.
5
7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
OFFSET
1,1
COMMENTS
Reduced form is [1, 3, -3]. Discriminant = 21. Class number = 2.
Values of the quadratic form are {0, 1, 3, 4} mod 6, so this is a subsequence of A002476. - R. J. Mathar, Jul 30 2008
It can be checked that the primes p of the form x^2 + n*x*y + y^2, n >= 3, where x and y are nonnegative, depend on n mod 6 as follows: n mod 6 = 0 => p mod 12 = {1,5}; n mod 6 = 1 => p mod 12 = {1,7}; n mod 6 = 2 => p mod 12 = {1}; n mod 6 = 3 => p mod 12 = {1,5,7,11}; n mod 6 = 4 => p mod 12 = {1}; n mod 6 = 5 => p mod 12 = {1,7}. - Walter Kehowski, Jun 01 2008
REFERENCES
Z. I. Borevich and I. R. Shafarevich, Number Theory.
David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
LINKS
Peter Luschny, Binary Quadratic Forms
N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
EXAMPLE
a(1) = 7 because we can write 7 = 1^2 + 5*1*1 + 1^2.
MATHEMATICA
a = {}; w = 5; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]
PROG
(Sage) # uses[binaryQF]
# The function binaryQF is defined in the link 'Binary Quadratic Forms'.
Q = binaryQF([1, 5, 1])
print(Q.represented_positives(1303, 'prime')) # Peter Luschny, May 12 2021
CROSSREFS
Primes in A243172.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.
Sequence in context: A038478 A043010 A322174 * A141159 A092475 A106924
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 24 2008
STATUS
approved