[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139215
Expansion of q^(-1) * psi(q) * phi(q^9) / (psi(q^3) * psi(q^6)) in power of q where phi(), psi() are Ramanujan theta functions.
3
1, 1, 0, 0, -1, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, -3, 0, -4, 0, 0, 0, 4, 0, 5, 0, 0, 0, -7, 0, -8, 0, 0, 0, 12, 0, 14, 0, 0, 0, -17, 0, -20, 0, 0, 0, 24, 0, 28, 0, 0, 0, -36, 0, -40, 0, 0, 0, 52, 0, 56, 0, 0, 0, -71, 0, -80, 0, 0, 0, 96, 0, 109, 0, 0, 0, -133
OFFSET
-1,11
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^2 * eta(q^3) * eta(q^18)^5 / (eta(q) * eta(q^6) * eta(q^9)^2 * eta(q^12)^2 * eta(q^36)^2) in powers of q.
Euler transform of period 36 sequence [ 1, -1, 0, -1, 1, -1, 1, -1, 2, -1, 1, 1, 1, -1, 0, -1, 1, -4, 1, -1, 0, -1, 1, 1, 1, -1, 2, -1, 1, -1, 1, -1, 0, -1, 1, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = 2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A139213.
a(n) = -(-1)^n * A139216(n). a(2*n) = 0 unless n=0.
a(3*n + 1) = 0. a(6*n + 3) = - A217786(n). - Michael Somos, Sep 07 2015
EXAMPLE
G.f. = 1/q + 1 - q^3 + 2*q^9 + 2*q^11 - 3*q^15 - 4*q^17 + 4*q^21 + 5*q^23 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 2 EllipticTheta[ 2, 0, q^(1/2)] EllipticTheta[ 3, 0, q^9] / (EllipticTheta[ 2, 0, q^(3/2)] EllipticTheta[ 2, 0, q^3]), {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^2 * eta(x^3 + A) * eta(x^18 + A)^5 / (eta(x + A) * eta(x^6 + A) * eta(x^9 + A)^2 * eta(x^12 + A)^2 * eta(x^36 + A)^2), n))};
CROSSREFS
Sequence in context: A282695 A292936 A062590 * A139216 A348692 A355432
KEYWORD
sign
AUTHOR
Michael Somos, Apr 11 2008
STATUS
approved