[go: up one dir, main page]

login
A138992
a(n) = Frobenius number for 6 successive primes = F[p(n), p(n+1), p(n+2), p(n+3), p(n+4), p(n+5)].
11
1, 4, 9, 16, 31, 41, 64, 63, 102, 143, 169, 216, 203, 264, 304, 381, 470, 502, 538, 562, 592, 638, 769, 989, 1360, 1008, 929, 961, 995, 1051, 1530, 1582, 1777, 1694, 2084, 2140, 2369, 2288, 2527, 2778, 3399, 2721, 2859, 2698, 2756, 3035, 3613, 5800, 4765
OFFSET
1,2
EXAMPLE
a(4)=16 because 16 is the largest number k such that equation 7*x_1 + 11*x_2 + 13*x_3 + 17*x_4 + 19*x_5 + 23*x_6 = k has no solution for any nonnegative x_i (in other words, for every k > 16 there exist one or more solutions).
MATHEMATICA
Table[FrobeniusNumber[{Prime[n], Prime[n + 1], Prime[n + 2], Prime[n + 3], Prime[n + 4], Prime[n + 5]}], {n, 1, 100}]
FrobeniusNumber/@Partition[Prime[Range[100]], 6, 1] (* Harvey P. Dale, Aug 15 2014 *)
CROSSREFS
Frobenius numbers for k successive primes: A037165 (k=2), A138989 (k=3), A138990 (k=4), A138991 (k=5), this sequence (k=6), A138993 (k=7), A138994 (k=8).
Sequence in context: A161328 A073141 A093175 * A199936 A326958 A281904
KEYWORD
nonn
AUTHOR
Artur Jasinski, Apr 05 2008
STATUS
approved