[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138915
G.f. A(x) satisfies: 6*A(x) = A(A(A(A(A(x))))) + 5*x + x^2 with A(0)=0.
3
1, 1, 20, 1070, 82620, 7950630, 893138136, 113042205894, 15776443441194, 2393774318253534, 391021817774684352, 68276246115093735882, 12675272091572931300360, 2491402163326687657447940
OFFSET
1,3
COMMENTS
A(A(A(A(A(x))))) is the 5th self-composition of the g.f. A(x).
EXAMPLE
G.f.: A(x) = x + x^2 + 20*x^3 + 1070*x^4 + 82620*x^5 +...
A(A(x)) = x + 2*x^2 + 42*x^3 + 2241*x^4 + 172960*x^5 +...
A(A(A(x))) = x + 3*x^2 + 66*x^3 + 3519*x^4 + 271550*x^5 +...
A(A(A(A(x)))) = x + 4*x^2 + 92*x^3 + 4910*x^4 + 378944*x^5 +...
A(A(A(A(A(x))))) = x + 5*x^2 + 120*x^3 + 6420*x^4 + 495720*x^5 +...
so that 6*A(x) = A(A(A(A(A(x))))) + 5*x + x^2.
PROG
(PARI) {a(n)=local(A=x+x^2, G); if(n<1, 0, for(i=3, n+1, G=x; for(j=1, 5, G=subst(A, x, G+x*O(x^i))); A=A+polcoeff(G, i)*x^i); polcoeff(A, n))}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 03 2008
STATUS
approved