[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A138094
A triangular sequence of eight back recursive polynomials that are Hermite H(x,n) like and alternating orthogonal on domain {-Infinity,Infinity} and weight function Exp[ -x^2/2]:k=8 P(x, n) = Sum[If[Mod[m, 2] == 1, (m + 1)*x^m*P(x, n - m), n^(m/2)*P(x, n - m)], {m, 1, k}].
1
1, 0, 2, 2, 0, 4, 0, 10, 0, 12, 24, 0, 36, 0, 32, 0, 148, 0, 140, 0, 86, 432, 0, 656, 0, 512, 0, 232, 0, 3076, 0, 2976, 0, 1782, 0, 624, 10112, 0, 15752, 0, 12688, 0, 6040, 0, 1680, 0, 80308, 0, 80104, 0, 51148, 0, 19976, 0, 4512, 188320, 0, 459736, 0, 382592, 0, 198688
OFFSET
1,3
COMMENTS
Row sums are:
{1, 2, 6, 22, 92, 374, 1832, 8458, 46272, 236048, 1306268};
The alternating orthogonal integration is:
Table[Integrate[P[x, n]*P[x, m]*Exp[ -x^2/2], {x, -Infinity, Infinity}], {n, 0, 10}, {m, 0,10}] // TableForm;
This sequence is the result of a thought experiment for 8th derivatives.
The lower 7 row sums are the same as k=6: only
the higher values are really different.
FORMULA
k=8 P(x, n) = Sum[If[Mod[m, 2] == 1, (m + 1)*x^m*P(x, n - m), n^(m/2)*P(x, n - m)], {m, 1, k}]; out_n,m=Coefficients(P(x,n)).
EXAMPLE
{1},
{0, 2},
{2, 0, 4},
{0, 10, 0, 12},
{24, 0, 36, 0, 32},
{0, 148, 0, 140, 0, 86},
{432, 0, 656, 0, 512, 0, 232},
{0, 3076, 0, 2976, 0, 1782, 0, 624},
{10112, 0, 15752, 0, 12688, 0, 6040, 0, 1680},
{0, 80308, 0, 80104, 0, 51148, 0, 19976, 0, 4512},
{188320, 0, 459736, 0, 382592, 0, 198688, 0, 64800, 0, 12132}
MATHEMATICA
Clear[P, x]:k=8; Table[P[x, -n] = 0, {n, 1, k}]; P[x, 0] = 1; P[x_, n_] := P[x, n] = Sum[If[Mod[m, 2] == 1, (m + 1)*x^m*P[x, n - m], n^(m/2)*P[x, n - m]], {m, 1, k}];; Table[ExpandAll[P[x, n]], {n, 0, 10}]; a = Table[CoefficientList[P[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[P[x, n], x]], {n, 0, 10}];
CROSSREFS
Similar to but different from A138093.
Sequence in context: A138092 A138090 A138093 * A060821 A191718 A286777
KEYWORD
nonn,uned,tabl
AUTHOR
Roger L. Bagula, May 02 2008
STATUS
approved