[go: up one dir, main page]

login
A137946
Triangle of coefficients associate with the expansion of the K_3 graph matric characteristic polynomial as a Sheffer sequence: M = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}} f(t)=-t^3+3t+2 p(x,t)=1/(2*t^3+3*t^2-1)^x=1/(t^3*f(1/t))^x.
0
1, 0, 0, 6, 0, 12, 0, 108, 108, 0, 720, 720, 0, 7920, 11160, 3240, 0, 90720, 136080, 45360, 0, 1300320, 2222640, 1058400, 136080, 0, 20563200, 37376640, 20079360, 3265920, 0, 372314880, 726667200, 453146400, 106142400, 7348320
OFFSET
1,4
COMMENTS
The row sums are:
{1, 0, 6, 12, 216, 1440, 22320, 272160, 4717440, 81285120, 1665619200}
This sequence is a method of projecting the K_3 graph matrix
on to a Sheffer sequence. This one is like that used to generate the Fibonacci numbers.
REFERENCES
Jonathan L. Gross and Thomas W. Tucker," Topologocal Graph Theory",Dover, New York,2001, page 10 figure 1.7
Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), page 149
FORMULA
M = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}} f(t)=-t^3+3t+2 p(x,t)=p(x,t)=1/(2*t^3+3*t^2-1)^x=1/(t^3*f(1/t))^x=Sum(P(x,n)*t^n/n!,{n,0,Infinity}) Out_n,m=n!(-1)^x*Coefficients(P(x,n)).
EXAMPLE
{1},
{},
{0, 6},
{0, 12},
{0, 108, 108},
{0, 720, 720},
{0, 7920, 11160, 3240},
{0, 90720, 136080, 45360},
{0, 1300320, 2222640, 1058400, 136080},
{0, 20563200, 37376640, 20079360, 3265920},
{0, 372314880, 726667200, 453146400, 106142400, 7348320}
MATHEMATICA
(*K_3 graph connection matrix*) M = {{0, 1, 1}, {1, 0, 1}, {1, 1, 0}}; f[t_] = CharacteristicPolynomial[M, t]; p[t_] = ExpandAll[1/(t^3*f[1/t])^x]; g = Table[ExpandAll[(n!*(-1)^x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]], {n, 0, 10}]; a = Table[ CoefficientList[(n!*(-1)^x)*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n], x], {n, 0, 10} Flatten[a]
CROSSREFS
Cf. A000045.
Sequence in context: A028635 A028619 A062765 * A256856 A028603 A205966
KEYWORD
nonn,tabl,uned
AUTHOR
Roger L. Bagula, Apr 30 2008
STATUS
approved