OFFSET
0,1
LINKS
Index entries for linear recurrences with constant coefficients, signature (14,-71,154,-120).
FORMULA
G.f.: 2*(53*x^3-45*x^2+12*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Oct 27 2014
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(2*x)*(exp(3*x) - exp(2*x) - exp(x) - 1).
a(n) = 14*a(n-1) - 71*a(n-2) + 154*a(n-3) - 120*a(n-4) for n > 3. (End)
MATHEMATICA
Array[5^#-4^#-3^#-2^#&, 30, 0]
LinearRecurrence[{14, -71, 154, -120}, {-2, -4, -4, 26}, 30] (* Harvey P. Dale, Mar 25 2024 *)
PROG
(PARI) Vec(2*(53*x^3-45*x^2+12*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Oct 27 2014
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Vladimir Joseph Stephan Orlovsky, Apr 28 2008
EXTENSIONS
More terms, corrected offset and Mathematica program, Harvey P. Dale, Apr 27 2013
a(24) from Elmo R. Oliveira, Sep 12 2024
STATUS
approved