[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137787
a(n) = 5^n - 4^n - 3^n - 2^n.
0
-2, -4, -4, 26, 272, 1826, 10736, 59426, 318272, 1670786, 8656976, 44454626, 226827872, 1151991746, 5830280816, 29429454626, 148249811072, 745630312706, 3745590106256, 18797445635426, 94264432179872, 472428649241666, 2366562219717296, 11850466059333026, 59322887352366272
OFFSET
0,1
FORMULA
G.f.: 2*(53*x^3-45*x^2+12*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Oct 27 2014
From Elmo R. Oliveira, Sep 12 2024: (Start)
E.g.f.: exp(2*x)*(exp(3*x) - exp(2*x) - exp(x) - 1).
a(n) = 14*a(n-1) - 71*a(n-2) + 154*a(n-3) - 120*a(n-4) for n > 3. (End)
MATHEMATICA
Array[5^#-4^#-3^#-2^#&, 30, 0]
LinearRecurrence[{14, -71, 154, -120}, {-2, -4, -4, 26}, 30] (* Harvey P. Dale, Mar 25 2024 *)
PROG
(PARI) Vec(2*(53*x^3-45*x^2+12*x-1)/((2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)) + O(x^100)) \\ Colin Barker, Oct 27 2014
CROSSREFS
Sequence in context: A068554 A371373 A092524 * A225171 A320600 A360685
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
More terms, corrected offset and Mathematica program, Harvey P. Dale, Apr 27 2013
a(24) from Elmo R. Oliveira, Sep 12 2024
STATUS
approved