OFFSET
0,3
LINKS
FORMULA
From David Radcliffe, Sep 03 2021: (Start)
a(n) = (n! / A060828(n)) mod 3;
a(n) = 1 + (A189672(n) mod 2);
a(6*n) = a(6*n+1) = a(2*n);
a(6*n+2) = 3 - a(2*n);
a(6*n+3) = a(6*n+4) = 3 - a(2*n+1);
a(6*n+5) = a(2*n+1).
(End)
From Kevin Ryde, Dec 03 2022: (Start)
a(n) = 1 if n written in base 9 has an even number of digits {2,3,4,6,7}; and otherwise a(n) = 2.
Fixed point of the morphism 1 -> 1,1,2,2,2,1,2,2,1; 2 -> 2,2,1,1,1,2,1,1,2; starting from 1.
(End)
a(n) = A212307(n) mod 3. - Ridouane Oudra, Sep 25 2024
EXAMPLE
6! = 720 decimal = 222200 ternary, so a(6) = 2.
MATHEMATICA
f[n_] := Mod[6 Times @@ (Rest[ FoldList[{1 + #1[[1]], #2! 2^(#1[[1]] #2)} &, {0, 0}, Reverse[ IntegerDigits[n, 3]]]]), 10][[2]]; # /. {0 -> 1} & /@ Mod[Table[f@n, {n, 0, 104}], 3] (* Robert G. Wilson v, Apr 17 2010 *)
fnzd[n_]:=Module[{sidn3=Split[IntegerDigits[n!, 3]]}, If[MemberQ[ Last[ sidn3], 0], sidn3[[-2, 1]], sidn3[[-1, 1]]]]; Array[fnzd, 110, 0] (* Harvey P. Dale, May 03 2018 *)
PROG
(PARI) a(n) = vecsum([bittest(220, b) |b<-digits(n, 9)])%2 + 1; \\ Kevin Ryde, Dec 03 2022
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Carl R. White, Jan 16 2008
EXTENSIONS
More terms from Robert G. Wilson v, Apr 17 2010
STATUS
approved