[go: up one dir, main page]

login
A136360
Square roots of the perfect squares in A133459.
2
6, 9, 12, 17, 22, 24, 25, 26, 60, 86, 99, 120, 188, 200, 202, 210, 214, 238, 243, 268, 336, 348, 415, 476, 481, 504, 524, 539, 565, 602, 693, 704, 720, 726, 732, 846, 899, 961, 965, 990, 1026, 1202, 1218, 1221, 1224, 1320, 1551, 1602, 1687, 1716, 1724, 1734
OFFSET
1,1
COMMENTS
Corresponding squares in A133459 are listed in A136359(n) = a(n)^2.
Note that some numbers in a(n) are also perfect squares: m = k^2 = {9, 25, 961, 17424, ...}. The corresponding numbers k such that a(n) = k^2 are listed in A136361.
FORMULA
a(n) = sqrt(A136359(n)).
EXAMPLE
A133459 begins {2, 7, 12, 19, 24, 36, 41, 46, 58, 76, 80, 81, 93, 115, 127, 132, 144, 150, 166, 197, 201, 202, 214, 236, 252, 271, 289, ...}.
Thus a(1) = sqrt(36) = 6, a(2) = sqrt(81) = 9, a(3) = sqrt(144) = 12, a(4) = sqrt(289) = 17 that are the square roots of the perfect squares in A133459.
MATHEMATICA
Sqrt[ Select[ Intersection[ Flatten[ Table[ i^2*(i+1)/2 + j^2*(j+1)/2, {i, 1, 300}, {j, 1, i} ] ] ], IntegerQ[ Sqrt[ # ] ] & ] ]
CROSSREFS
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Dec 25 2007
STATUS
approved