[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136325
a(n) = 8*a(n-1)-a(n-2) with a(0)=0 and a(1)=3.
3
0, 3, 24, 189, 1488, 11715, 92232, 726141, 5716896, 45009027, 354355320, 2789833533, 21964312944, 172924670019, 1361433047208, 10718539707645, 84386884613952, 664376537203971, 5230625413017816, 41180626766938557
OFFSET
0,2
COMMENTS
Nonnegative integers k such that 15*k^2 + 9 is a square.
From the recurrence we have a(n) = sqrt(15)*((4 + sqrt(15))^n - (4 - sqrt(15))^n)/10.
FORMULA
From Colin Barker, Jan 24 2013: (Start)
a(n) = (sqrt(3/5)*(-(4-sqrt(15))^n + (4+sqrt(15))^n))/2.
G.f.: 3*x/(x^2-8*x+1). (End)
a(n) = 3 * A001090(n).
For n > 0, a(n) is the denominator of the continued fraction [2,3,2,3,...,2,3] with n repetitions of 2,3. For the numerators see A070997. - Greg Dresden, Sep 12 2019
EXAMPLE
G.f. = 3*x + 24*x^2 + 189*x^3 + 1488*x^4 + 11715*x^5 + 92232*x^6 + 726141*x^7 + ...
MATHEMATICA
Do[If[IntegerQ[Sqrt[3 (3 + 5 x^2)]], Print[{x, Sqrt[3 (3 + 5 x^2)]}]], {x, 0, 2000000}]
LinearRecurrence[{8, -1}, {0, 3}, 30] (* Harvey P. Dale, Aug 18 2014 *)
a[ n_] := 3 ChebyshevU[ n - 1, 4]; (* Michael Somos, Oct 14 2015 *)
a[ n_] := 3/2 ((4 + Sqrt[15])^n - (4 - Sqrt[15])^n) / Sqrt[15] // Simplify; (* Michael Somos, Oct 14 2015 *)
PROG
(PARI) {a(n) = subst(poltchebi(n+1) - 4 * poltchebi(n), x, 4) / 5}; /* Michael Somos, Apr 05 2008 */
(PARI) {a(n) = 3 * polchebyshev(n-1, 2, 4)}; /* Michael Somos, Oct 14 2015 */
(PARI) {a(n) = 3 * imag( (4 + quadgen(60))^n )}; /* Michael Somos, Oct 14 2015 */
CROSSREFS
Cf. A001090.
Sequence in context: A213100 A027324 A122741 * A194888 A103333 A037762
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition corrected by Bruno Berselli, Jan 24 2013
Definition, comments, formulas further corrected by Greg Dresden, Sep 13 2019
Exchanged definition and comment, in order to retain offset 0. - N. J. A. Sloane, Sep 23 2019
STATUS
approved