[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135946
Number of primes with 3n digits made of adjacent primes with 3 digits.
2
143, 2753, 415639, 36573197, 4566059881
OFFSET
1,1
COMMENTS
Number of primes of the form: ... ddd3ddd2ddd1ddd0 = ddd0 * 10^0 + ddd1 * 10^3 + ddd2 * 10^6 + ddd3 * 10^9 + ..., where ddd0, ddd1, ddd2, ddd3, ... are prime with 3 digits. The i-th element of the sequence is the number of primes with i * 3 digits.
Approximation for the sum of the sequence up to a(k) for large values of k: Sum_{i=1..k} a(i) = 10^(3*k) / (3*k*log(10)) * (143/1000)^(k-1).
EXAMPLE
Example: a(2) = 2753 because there are 2753 numbers of the form ddd1ddd0 with ddd0, ddd1 prime numbers, i.e.: 101107, 101113, 101149, 101173, 101197, 101281, 101293, ..., 997991.
PROG
(Python)
from itertools import product
from sympy import isprime, primerange
def a(n):
p3 = list(map(str, primerange(100, 1000)))
return sum(1 for p in product(p3, repeat=n) if isprime(int("".join(p))))
print([a(n) for n in range(1, 4)]) # Michael S. Branicky, Feb 13 2023
CROSSREFS
Sequence in context: A185514 A220292 A159054 * A217534 A279115 A199039
KEYWORD
nonn,base,bref
AUTHOR
EXTENSIONS
a(4) from Donovan Johnson, Apr 17 2010
a(5) from Michael S. Branicky, Feb 13 2023
STATUS
approved