[go: up one dir, main page]

login
A135536
a(n) = 8*a(n-2), with a(0) = 7, a(1) = 14.
2
7, 14, 56, 112, 448, 896, 3584, 7168, 28672, 57344, 229376, 458752, 1835008, 3670016, 14680064, 29360128, 117440512, 234881024, 939524096, 1879048192, 7516192768, 15032385536, 60129542144, 120259084288, 481036337152
OFFSET
0,1
FORMULA
a(n) = b(3*n) + b(3*n + 1) + b(3*n + 2), where b(n) = A135530(n) [previous name].
a(n) = 7 * abs(A094014(n)).
O.g.f.: 7*(1 + 2*x)/(1 - 8*x^2). - R. J. Mathar, Feb 23 2008
From G. C. Greubel, Oct 18 2016: (Start)
a(n) = (7/4)*( (2 + sqrt(2)) + (-1)^n*(2 - sqrt(2)) )*(sqrt(2))^(3*n).
a(n) = 8*a(n-2).
E.g.f.: (7/2)*( 2*cosh(2*sqrt(2)*x) + sqrt(2)*sinh(2*sqrt(2)*x) ). (End)
MATHEMATICA
Table[(7/4)*( (2 + Sqrt[2]) + (-1)^n*(2 - Sqrt[2]) )*(Sqrt[2])^(3*n), {n, 0, 25}] (* or *) LinearRecurrence[{0, 8}, {7, 14}, 25] (* G. C. Greubel, Oct 18 2016 *)
PROG
(PARI) a(n)=([0, 1; 8, 0]^n*[7; 14])[1, 1] \\ Charles R Greathouse IV, Oct 18 2016
CROSSREFS
Sequence in context: A237686 A170918 A033650 * A241201 A295388 A020700
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Feb 22 2008
EXTENSIONS
More terms from R. J. Mathar, Feb 23 2008
New name from G. C. Greubel, Oct 18 2016
STATUS
approved