[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123890
Expansion of g.f.: x/((1-x^2)^5 - 1 + x).
1
1, 5, 25, 115, 525, 2385, 10825, 49120, 222875, 1011251, 4588335, 20818575, 94459755, 428590575, 1944636420, 8823364350, 40034094615, 181645987625, 824179118751, 3739533301365, 16967318139775, 76985511735170, 349304997307275, 1584895370489480
OFFSET
0,2
LINKS
A. Burstein and T. Mansour, Words restricted by 3-letter ..., arXiv:math/0112281 [math.CO], 2001.
A. Burstein and T. Mansour, Words Restricted by 3-Letter Generalized Multipermutation Patterns, Annals. Combin., 7 (2003), 1-14.
MAPLE
seq(coeff(series(1/(1-5*x+10*x^3-10*x^5+5*x^7-x^9), x, n+1), x, n), n = 0 .. 30); # G. C. Greubel, Aug 07 2019
MATHEMATICA
CoefficientList[Series[x/((1-x^2)^5 -1+x), {x, 0, 30}], x] (* G. C. Greubel, Aug 07 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(x/((1-x^2)^5 -1+x)) \\ G. C. Greubel, Aug 07 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x/((1-x^2)^5 -1+x) )); // G. C. Greubel, Aug 07 2019
(Sage)
def A123890_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x/((1-x^2)^5 -1+x) ).list()
A123890_list(30) # G. C. Greubel, Aug 07 2019
(GAP) a:=[1, 5, 25, 115, 525, 2385, 10825, 49120, 222875];; for n in [10..30] do a[n]:=5*a[n-1]-10*a[n-3] +10*a[n-5]-5*a[n-7]+a[n-9]; od; a; # G. C. Greubel, Aug 07 2019
CROSSREFS
Sequence in context: A261383 A089947 A267467 * A123894 A200781 A055297
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 20 2006
STATUS
approved