[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123636
a(n) = 1 + 1*n + 1*n*2 + 1*n*2*(n-1) + 1*n*2*(n-1)*3 + 1*n*2*(n-1)*3*(n-2) + ... + n!.
2
1, 1, 3, 10, 37, 176, 979, 6658, 50873, 451180, 4376911, 47740694, 560586613, 7248848608, 99837660875, 1492197903466, 23571796088689, 399706304138708, 7121101849585543, 135049981967575870, 2678257990821099821, 56164666081871350984, 1226908363217557264003, 28188326528878836076178
OFFSET
0,3
LINKS
FORMULA
a(n) = 1 + Sum_{k=2..n} (floor((k + 1)/2)! * n!)/((n - floor(k/2))!). - G. C. Greubel, Oct 26 2017
a(n) ~ n!. - Vaclav Kotesovec, Oct 09 2020
EXAMPLE
a(0) = a(1) = 1;
a(2) = 1 + 1*2 = 3;
a(3) = 1 + 1*3 + 1*3*2 = 10;
a(4) = 1 + 1*4 + 1*4*2 + 1*4*2*3 = 37;
a(5) = 1 + 1*5 + 1*5*2 + 1*5*2*4 + 1*5*2*4*3 = 176; ...
MATHEMATICA
Join[{1}, Table[Sum[(Floor[(k + 1)/2]! * n!)/((n - Floor[k/2])!), {k, 1, n}], {n, 1, 50}]] (* G. C. Greubel, Oct 26 2017 *)
PROG
(PARI) {a(n)=if(n==0, 1, sum(k=1, n, prod(j=1, k, ((j+1)\2)*(j%2)+(n+1-(j\2))*((j-1)%2))))}
CROSSREFS
Cf. A123637.
Sequence in context: A363294 A289990 A370369 * A375655 A371901 A092816
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 03 2006
STATUS
approved