Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Aug 03 2021 02:04:06
%S 2,2,2,2,5,2,2,2,113,151,2,61,53,89,5,307,19,2,491,3,11,271,41,2,271,
%T 359,3,2,79,233,2,7,13,11,5,29,71,139,127,139,2003,5,743,673,593,383,
%U 653,661,251,6389,2833,223,163,37,709,131,41,2203,941,2707,13,1283,383
%N Smallest prime q such that (q^p-1)/(q-1) is prime, where p = prime(n); or 0 if no such prime q exists.
%C Corresponding primes (q^p-1)/(q-1) are listed in A123488.
%C a(n) coincides with A066180(n) when A066180(n) is prime or 0.
%C From _Robert G. Wilson v_, Dec 28 2016: (Start)
%C Conjecture: Never is a(n) equal to 0.
%C Records: 2, 5, 113, 151, 307, 491, 2003, 6389, 7883, 11813, 18587, 31721, 40763, ... ;
%C First occurrence of the k_th prime: 1, 20, 5, 32, 21, 33, 81, 17, ... ;
%C Positions where two occurs: 1, 2, 3, 4, 6, 7, 8, 11, 18, 24, 28, 31, 98, 111, ... ;
%C Positions where three occurs: 20, 27, 100, 182, ... ;
%C Positions where five occurs: 5, 15, 35, 42, 114, 158, ... ; etc. (End)
%C Jones & Zvonkin conjecture (as did Robert G. Wilson v above) that a(n) > 0 for all n. - _Charles R Greathouse IV_, Jul 23 2021
%H Robert G. Wilson v, <a href="/A123487/b123487.txt">Table of n, a(n) for n = 1..205</a>
%H Gareth A. Jones and Alexander K. Zvonkin, <a href="https://arxiv.org/abs/2106.00346">Groups of prime degree and the Bateman-Horn Conjecture</a>, arXiv:2106.00346 [math.GR], 2021.
%t f[n_] := NestWhile[NextPrime, 2, ! PrimeQ[Cyclotomic[Prime[n], #]] &]; Array[f, 63](* _Davin Park_, Dec 28 2016 and _Robert G. Wilson v_, Dec 28 2016 *)
%o (PARI) a(n) = {my(x = 2); while (!isprime(polcyclo(prime(n), x)), x= nextprime(x+1)); x;} \\ _Michel Marcus_, Dec 10 2016
%Y Cf. A123488, A066180, A084732.
%K nonn
%O 1,1
%A _Alexander Adamchuk_, Sep 30 2006, Oct 02 2006