[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123293
Number of permutations of n distinct letters (ABCD...) each of which appears 4 times and having n-3 fixed points.
0
0, 0, 128, 512, 1280, 2560, 4480, 7168, 10752, 15360, 21120, 28160
OFFSET
0,3
EXAMPLE
1
0, "0", 0, 0, 1
1, 0, 16, 0, 36, "0", 16, 0, 1
346, 1824, 4536, 7136, 7947, 6336, 3936, 1728, 684, "128", 48, 0, 1
748521, 3662976, 8607744, 12880512, 13731616, 11042688, 6928704, 3458432, 1395126, 453888, 122016, 25344, 4824, "512", 96, 0, 1
3993445276, 18743463360, 42506546320, 61907282240, 64917874125, 52087325696, 33176621920, 17181584640, 7352761180, 2628808000, 790912656, 201062080, 43284010, 7873920, 1216000, 154496, 17640, "1280", 160, 0, 1
etc..
MAPLE
p := (x, k)->k!^2*sum(x^j/((k-j)!^2*j!), j=0..k); R := (x, n, k)->p(x, k)^n; f := (t, n, k)->sum(coeff(R(x, n, k), x, j)*(t-1)^j*(n*k-j)!, j=0..n*k); for n from 0 to 5 do seq(coeff(f(t, n, 4), t, m)/4!^n, m=0..4*n); od;
CROSSREFS
Cf. A059060.
Sequence in context: A135271 A369638 A223316 * A188864 A228688 A231529
KEYWORD
nonn
AUTHOR
Zerinvary Lajos, Nov 07 2006
STATUS
approved