[go: up one dir, main page]

login
A123027
Triangle of coefficients of (1 - x)^n*U(n,-(3*x - 2)/(2*x - 2)), where U(n,x) is the n-th Chebyshev polynomial of the second kind.
14
1, -2, 3, 3, -10, 8, -4, 22, -38, 21, 5, -40, 111, -130, 55, -6, 65, -256, 474, -420, 144, 7, -98, 511, -1324, 1836, -1308, 377, -8, 140, -924, 3130, -6020, 6666, -3970, 987, 9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584, -10, 255, -2472, 12720, -39430, 77645, -98160, 77378, -34690, 6765
OFFSET
0,2
COMMENTS
The n-th row consists of the coefficients in the expansion of Sum_{j=0..n} A053122(n,j)*x^j*(1 - x)^(n - j).
LINKS
Eric Weisstein's World of Mathematics, Chebyshev Polynomial of the Second Kind
FORMULA
From Franck Maminirina Ramaharo, Oct 10 2018: (Start)
Row n = coefficients in the expansion of (1/sqrt((5*x - 4)*x))*(((3*x - 2 + sqrt((5*x - 4)*x))/2)^(n + 1) - ((3*x - 2 - sqrt((5*x - 4)*x))/2)^(n + 1)).
G.f.: 1/(1 + (2 - 3*x)*t + (1 - x)^2*t^2).
E.g.f.: exp(t*(3*x - 2)/2)*(sqrt((5*x - 4)*x)*cosh(t*sqrt((5*x - 4)*x)/2) + (3*x - 2)*sinh(t*sqrt((5*x - 4)*x)/2))/sqrt((5*x - 4)*x).
T(n,1) = (-1)^(n+1)*A006503(n).
T(n,n) = A001906(n+1). (End)
EXAMPLE
Triangle begins:
1;
-2, 3;
3, -10, 8;
-4, 22, 38, 21;
5, -40, 111, -130, 55;
-6, 65, -256, 474, -420, 144;
7, -98, 511, -1324, 1836, -1308, 377;
-8, 140, -924, 3130, -6020, 6666, -3970, 987;
9, -192, 1554, -6588, 16435, -25088, 23109, -11822, 2584;
... reformatted and extended. Franck Maminirina Ramaharo, Oct 10 2018
MATHEMATICA
b0 = Table[CoefficientList[ChebyshevU[n, x/2 -1], x], {n, 0, 10}];
Table[CoefficientList[Sum[b0[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n, 0, m}], x], {m, 0, 10}]//Flatten
(* Alternative Adamson Matrix method *)
t[n_, m_] = If[n==m, 2, If[n==m-1 || n==m+1, 1, 0]];
M[d_] := Table[t[n, m], {n, d}, {m, d}];
a = Join[{{1}}, Table[CoefficientList[Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]];
Table[CoefficientList[Sum[a[[m+1]][[n+1]]*x^n*(1-x)^(m-n), {n, 0, m}], x], {m, 0, 10}]//Flatten
PROG
(Maxima)
A053122(n, k) := if n < k then 0 else ((-1)^(n - k))*binomial(n + k + 1, 2*k + 1)$
P(x, n) := expand(sum(A053122(n, j)*x^j*(1 - x)^(n - j), j, 0, n))$
T(n, k) := ratcoef(P(x, n), x, k)$
tabl(nn) := for n:0 thru nn do print(makelist(T(n, k), k, 0, hipow(P(x, n), x)))$ /* Franck Maminirina Ramaharo, Oct 10 2018 */
(Sage)
def A053122(n, k): return 0 if (n<k) else (-1)^(n-k)*binomial(n+k+1, 2*k+1)
def p(n, x): return sum( A053122(n, j)*x^j*(1-x)^(n-j) for j in (0..n) )
def T(n): return ( p(n, x) ).full_simplify().coefficients(sparse=False)
flatten([T(n) for n in (0..12)]) # G. C. Greubel, Jul 15 2021
KEYWORD
sign,tabl
AUTHOR
EXTENSIONS
Edited, new name, and offset corrected by Franck Maminirina Ramaharo, Oct 10 2018
STATUS
approved