[go: up one dir, main page]

login
A122255
Characteristic function of numbers with 3-smooth Euler's totient (A000010).
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1
OFFSET
1,1
COMMENTS
Multiplicative because A000010 is. - Andrew Howroyd, Aug 01 2018
FORMULA
a(n) = if A006530(A000010(n)) <= 3 then 1 else 0.
a(A122254(n)) = a(A048135(n)) = 1; a(A048136(n)) = 0.
a(n) = if n=1 then 0 else A122256(n) - A122256(n-1).
a(n) = A122261(n) for n < 25.
a(n) = A065333(A000010(n)). - Antti Karttunen, Aug 22 2017
Multiplicative with a(p^e) = 1 for e = 1 and A006530(p-1) <= 3 or p <= 3; otherwise 0. - Andrew Howroyd, Aug 01 2018
EXAMPLE
For n = 25, phi(25) = 20 = 2^2 * 5^1, and this is not 3-smooth, thus a(25) = 0.
For n = 26, phi(26) = 12 = 2^4 * 3^1, and here there are no larger prime factors than 3 (12 is 3-smooth), thus a(26) = 1. - Antti Karttunen, Aug 22 2017
MATHEMATICA
a[n_] := Boole[FactorInteger[EulerPhi[n]][[-1, 1]] <= 3];
a /@ Range[1, 100] (* Jean-François Alcover, Sep 20 2019 *)
PROG
(PARI) a(n)=n=eulerphi(n); n>>=valuation(n, 2); n==3^valuation(n, 3) \\ Charles R Greathouse IV, Feb 21 2013
CROSSREFS
Cf. A000010, A006530, A065333, A122261, A122256 (partial sums).
Characteristic function of A122254.
Sequence in context: A334946 A225595 A228813 * A122261 A015120 A015142
KEYWORD
nonn,mult
AUTHOR
Reinhard Zumkeller, Aug 29 2006
STATUS
approved