OFFSET
1,4
LINKS
C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences, J. Integer Seq., Vol. 12. [This is a later version than that in the GenMetaFib.html link]
C. Deugau and F. Ruskey, Complete k-ary Trees and Generalized Meta-Fibonacci Sequences
B. Jackson and F. Ruskey, Meta-Fibonacci Sequences, Binary Trees and Extremal Compact Codes, Electronic Journal of Combinatorics, 13 (2006), #R26, 13 pages.
FORMULA
If 1 <= n <= 3, a(n)=1. If n = 4, then a(n)=2. If n>4 then a(n)=a(n-2-a(n-1)) + a(n-3-a(n-2)).
G.f.: A(z) = z * (1 - z^2) / (1 - z) * sum(prod(z^2 * (1 - z^(2 * [i])) / (1 - z^[i]), i=1..n), n=0..infinity), where [i] = (2^i - 1).
MAPLE
a := proc(n)
option remember;
if n <= 3 then return 1 end if;
if n <= 4 then return n-2 end if;
return add(a(n - i - 1 - a(n - i)), i = 1 .. 2)
end proc
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank Ruskey and Chris Deugau (deugaucj(AT)uvic.ca), Jun 20 2006
STATUS
approved