[go: up one dir, main page]

login
A120256
a(n) = number of terms in the n-th row of A120255(n) = number of terms in A001177 equal to n.
4
1, 0, 1, 1, 1, 2, 1, 2, 2, 2, 1, 10, 1, 2, 5, 4, 1, 10, 3, 11, 5, 2, 1, 55, 4, 2, 12, 11, 1, 52, 3, 8, 5, 2, 5, 133, 7, 4, 5, 46, 3, 52, 1, 27, 22, 6, 1, 260, 6, 40, 5, 11, 3, 100, 13, 78, 27, 6, 3, 874, 3, 4, 22, 48, 5, 52, 7, 27, 29, 116, 3, 1319, 3, 8, 36, 23, 13, 116, 3, 444, 112, 4, 1, 1834
OFFSET
1,6
EXAMPLE
Fibonacci(9) = 34; and the divisors of 34 are 1, 2, 17 and 34. Of these divisors, 1 and 2 divide earlier Fibonacci numbers, 17 and 34 do not. So a(9) = 2.
MATHEMATICA
f[t_] := Append[t, Select[Divisors[Fibonacci[Length[t] + 1]], FreeQ[Flatten[t], # ] &]]; Length /@ Nest[f, {}, 85] (* Ray Chandler, Jun 14 2006 *)
CROSSREFS
Sequence in context: A327640 A300648 A318450 * A300647 A114811 A275675
KEYWORD
nonn
AUTHOR
Leroy Quet, Jun 13 2006
EXTENSIONS
Extended by Ray Chandler, Jun 14 2006
STATUS
approved