[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A129756
Repetitions of odd numbers four times.
8
1, 1, 1, 1, 3, 3, 3, 3, 5, 5, 5, 5, 7, 7, 7, 7, 9, 9, 9, 9, 11, 11, 11, 11, 13, 13, 13, 13, 15, 15, 15, 15, 17, 17, 17, 17, 19, 19, 19, 19, 21, 21, 21, 21, 23, 23, 23, 23, 25, 25, 25, 25, 27, 27, 27, 27, 29, 29, 29, 29, 31, 31, 31, 31, 33, 33, 33, 33, 35, 35, 35, 35, 37, 37, 37, 37
OFFSET
0,5
COMMENTS
Conjecture: number of roots of P(x) = x^n - x^(n-1) - x^(n-2) - ... - x - 1 in the right half-plane. - Michel Lagneau, Apr 09 2013
FORMULA
a(n) = (Sum_{k=0..n} (k+1)*cos((n-k)*Pi/2)) + (1/4)*(2*cos(n*Pi/2) + 1 + (-1)^n) - 1, with n >= 0.
a(n) = 1 + 2*floor(n/4) = 1 + 2*A002265(n). - R. J. Mathar, Jun 10 2007
G.f.: (1+x^4)/((-1+x)^2*(1+x)*(x^2+1)). - R. J. Mathar, Nov 18 2007
a(n) = -1 + Sum_{k=0..n} ((1/12)*(-5*(k mod 4) + ((k+1) mod 4) + ((k+2) mod 4) + 7*((k+3) mod 4))). - Paolo P. Lava, Aug 21 2009
a(n) = n - A083219(n). - Michel Lagneau, Apr 09 2013
a(n) = (2*n + 1 + 2*cos(n*Pi/2) + cos(n*Pi) + 2*sin(n*Pi/2))/4. - Wesley Ivan Hurt, Oct 02 2017
From Stefano Spezia, May 26 2021: (Start)
E.g.f.: (cos(x) + cosh(x) + sin(x) + x*(cosh(x) + sinh(x)))/2.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 4. (End)
MATHEMATICA
Table[1 + 2 Floor[n/4], {n, 0, 100}] (* Bruno Berselli, Jul 26 2014 *)
CoefficientList[Series[(1 + x^4)/(-1 + x)^2/(1 + x)/(x^2 + 1), {x, 0, 100}], x] (* Vincenzo Librandi, Jul 26 2014 *)
PROG
(Magma) [1+2*Floor(n/4): n in [0..100]]; // Bruno Berselli, Jul 26 2014
(Magma) I:=[1, 1, 1, 1, 3, 3, 3, 3, 5]; [n le 9 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..100]]; // Vincenzo Librandi, Jul 25 2014
(Python)
def A129756(n): return (n>>1)|1 # Chai Wah Wu, Jan 31 2023
CROSSREFS
Sequence in context: A111756 A130821 A352226 * A339971 A156724 A196186
KEYWORD
nonn,easy
AUTHOR
STATUS
approved