[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 41)^2 = y^2.
12

%I #22 Feb 16 2024 06:38:21

%S 0,36,39,123,319,336,820,1960,2059,4879,11523,12100,28536,67260,70623,

%T 166419,392119,411720,970060,2285536,2399779,5654023,13321179,

%U 13987036,32954160,77641620,81522519,192071019,452528623,475148160,1119472036

%N Nonnegative values x of solutions (x, y) to the Diophantine equation x^2 + (x + 41)^2 = y^2.

%C Also values x of Pythagorean triples (x, x+41, y).

%C Corresponding values y of solutions (x, y) are in A157257.

%C lim_{n -> infinity} a(n)/a(n-3) = 3 + 2*sqrt(2).

%C lim_{n -> infinity} a(n)/a(n-1) = (7 + 2*sqrt(2))/(7 - 2*sqrt(2)) for n mod 3 = {1, 2}.

%C lim_{n -> infinity} a(n)/a(n-1) = (3 + 2*sqrt(2))*(7 - 2*sqrt(2))^2/(7 + 2*sqrt(2))^2 for n mod 3 = 0.

%H G. C. Greubel, <a href="/A129288/b129288.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,6,-6,0,-1,1).

%F a(n) = 6*a(n-3) - a(n-6) + 82 for n > 6; a(1)=0, a(2)=36, a(3)=39, a(4)=123, a(5)=319, a(6)=336.

%F G.f.: x*(36 + 3*x + 84*x^2 - 20*x^3 - x^4 - 20*x^5)/((1-x)*(1 - 6*x^3 + x^6)).

%F a(3*k + 1) = 41*A001652(k) for k >= 0.

%t LinearRecurrence[{1,0,6,-6,0,-1,1},{0,36,39,123,319,336,820},40] (* _Harvey P. Dale_, Jan 18 2015 *)

%o (PARI) forstep(n=0, 1200000000, [3 ,1], if(issquare(2*n^2+82*n+1681), print1(n, ",")))

%o (Magma) m:=25; R<x>:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!(x*(36+3*x+84*x^2-20*x^3-x^4-20*x^5)/((1-x)*(1-6*x^3+ x^6)))); // _G. C. Greubel_, May 07 2018

%Y Cf. A157257, A001652, A156035 (decimal expansion of 3 + 2*sqrt(2)), A157258 (decimal expansion of 7 + 2*sqrt(2)), A157259 (decimal expansion of 7 - 2*sqrt(2)), A157260 (decimal expansion of (7 + 2*sqrt(2))/(7 - 2*sqrt(2))).

%K nonn,easy

%O 1,2

%A _Mohamed Bouhamida_, May 26 2007

%E Edited and extended by _Klaus Brockhaus_, Feb 26 2009