[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128486
Expansion of ((b(q)*c(q))^3 - 8*(b(q^2)*c(q^2))^3) / 27 in powers of q where b(), c() are cubic AGM theta functions.
0
1, -14, 9, 52, 6, -126, -40, 136, 81, -84, -564, 468, 638, 560, 54, -2480, 882, -1134, -556, 312, -360, 7896, -840, 1224, -3089, -8932, 729, -2080, 4638, -756, 4400, 10528, -5076, -12348, -240, 4212, -2410, 7784, 5742, 816, -6870, 5040, 9644, -29328, 486, 11760, -18672, -22320
OFFSET
1,2
COMMENTS
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
FORMULA
Expansion of b(q) * b(q^2) * c(q) * c(q^2) * (b(q) * b(q^2) - c(q) * c(q^2)) / 9 in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^3))^6 - 8*(eta(q^2) * eta(q^6))^6 in powers of q.
Expansion of eta(q) * eta(q^2) * eta(q^3) * eta(q^6) * ((eta(q) * eta(q^2))^4 - 9*(eta(q^3) * eta(q^6))^4) in powers of q.
G.f.: x * Product_{k>0} (1 - x^k)^6 * (1 - x^(3*k))^6 - 8 * x^2 * Product_{k>0} (1 - x^(2*k))^6 * (1 - x^(6*k))^6.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6*t)) = -216 (t/i)^6 f(t) where q = exp(2 Pi i t).
a(2*n) = A007332(2*n) - 8 * A007332(n). a(2*n + 1) = A007332(2*n + 1).
EXAMPLE
G.f. = q - 14*q^2 + 9*q^3 + 52*q^4 + 6*q^5 - 126*q^6 - 40*q^7 + 136*q^8 + ...
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^6 - 8*x * (eta(x^2 + A) * eta(x^6+A))^6, n))};
(PARI) {a(n) = my(A, A1, A2); if( n<1, 0, n--; A = x * O(x^n); A1 = eta(x + A) * eta(x^2 + A); A2 = eta(x^3 + A) * eta(x^6 + A); polcoeff( A1^5*A2 - 9*x * A1*A2^5, n))};
(Magma) A := Basis( CuspForms( Gamma1(6), 6), 49); A[1] - 14*A[2] + 9*A[3]; /* Michael Somos, Feb 19 2015 */
CROSSREFS
Cf. A007332.
Sequence in context: A206641 A266014 A086050 * A147370 A140739 A305946
KEYWORD
sign,mult
AUTHOR
Michael Somos, Mar 04 2007
STATUS
approved