[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A128152
Numerator of Sum_{k=0..n} 1/binomial(n,k)^4.
0
1, 2, 33, 164, 20825, 10017, 25940593, 34743416, 3074035689, 672229195, 13443874324243, 431453199593, 53678600587865227, 33768054132971557, 813464644344955, 748569723383876272, 67454811525665973337193
OFFSET
0,2
COMMENTS
p^k divides a(p^k-1) for prime p and integer k > 0. p divides a(p-2) for prime p > 5.
LINKS
Eric Weisstein's World of Mathematics, Binomial Sums.
FORMULA
a(n) = numerator(Sum_{k=0..n} 1/binomial(n,k)^4).
MATHEMATICA
Table[ Numerator[ Sum[ 1 / Binomial[n, k]^4, {k, 0, n} ] ], {n, 0, 50} ]
CROSSREFS
Cf. A046825 (numerator of Sum_{k=0..n} 1/C(n, k)).
Cf. A100516 (numerator of Sum_{k=0..n} 1/C(n, k)^2).
Cf. A100518 (numerator of Sum_{k=0..n} 1/C(n, k)^3).
Sequence in context: A156369 A377354 A263054 * A052403 A362538 A006558
KEYWORD
frac,nonn
AUTHOR
Alexander Adamchuk, May 10 2007
STATUS
approved