[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A127927
G.f. A(x) satisfies: [x^(2n)] A(x)/Catalan(x)^n = A001764(n) = C(3n,n)/(2n+1) and [x^(2n+1)] A(x)/Catalan(x)^n = A001764(n+1) for n>=0, where Catalan(x) is the g.f. of A000108.
2
1, 1, 3, 9, 31, 108, 391, 1431, 5319, 19926, 75252, 285750, 1090491, 4177774, 16060401, 61916977, 239307063, 926929746, 3597296770, 13984508500, 54448030092, 212282062488, 828673761978, 3238495227846, 12669206034339
OFFSET
0,3
COMMENTS
Main diagonal of triangle A062745: a(n) = A062745(n,n) (see formula given in A062745 by Emeric Deutsch).
LINKS
FORMULA
a(n) = C(2*n,n) - (-1)^(n-1)*Sum_{i=0..[(n-1)/2]} C(3*i,i)*C(i-n-1,n-1-2*i)/(2*i+1).
From Vaclav Kotesovec, May 01 2018: (Start)
Recurrence: 2*(n-1)*n*(2*n + 1)*(5*n - 6)*a(n) = (n-1)^2*(115*n^2 - 138*n + 56)*a(n-1) + 4*(n-2)*(n+1)*(2*n - 3)*(5*n - 11)*a(n-2) - 36*(n-2)*(2*n - 5)*(2*n - 3)*(5*n - 1)*a(n-3).
a(n) ~ 4^n / (phi^2 * sqrt(Pi*n)), where phi = A001622 = (1 + sqrt(5))/2 is the golden ratio. (End)
MATHEMATICA
a[n_] := Binomial[2*n, n] - (-1)^(n-1)*Sum[ Binomial[3*k, k]*Binomial[k - n-1, n-1-2*k]/(2*k+1), {k, 0, Floor[(n-1)/2]}]; Table[a[n], {n, 0, 50}] (* G. C. Greubel, Apr 30 2018 *)
PROG
(PARI) {a(n)=binomial(2*n, n)+(-1)^n*sum(i=0, (n-1)\2, binomial(3*i, i) *binomial(i-n-1, n-1-2*i)/(2*i+1))}
(Magma) [1] cat [Binomial(2*n, n) - (-1)^(n-1)*(&+[Binomial(3*k, k)*Binomial(k-n - 1, n-2*k-1)/(2*k+1): k in [0..Floor((n-1)/2)]]): n in [1..50]]; // G. C. Greubel, Apr 30 2018
CROSSREFS
Cf. A062745; A001764 (ternary trees), A000108 (Catalan).
Sequence in context: A225340 A148966 A279971 * A148967 A189429 A123222
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 06 2007
STATUS
approved