[go: up one dir, main page]

login
A127048
Primes p such that denominator of Sum_{k=1..p-1} 1/k^5 is a fifth power.
8
2, 3, 5, 11, 13, 17, 37, 41, 53, 83, 127, 131, 137, 139, 149, 151, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 853, 857, 859, 863, 877, 881, 883, 887, 929, 967, 1091, 1093, 1097, 1103, 1109, 1151
OFFSET
1,1
LINKS
MATHEMATICA
d[n_] := Module[{}, su = 0; a = {}; For[i = 1, i <= n, i++, su = su + 1/ i^5; If[PrimeQ[i + 1], If[IntegerQ[(Denominator[su])^(1/5)], AppendTo[a, i + 1]]]]; a]; d[2000]
CROSSREFS
KEYWORD
nonn
AUTHOR
Artur Jasinski, Jan 03 2007
STATUS
approved