OFFSET
0,3
FORMULA
T(1,k) = k*(k + 1)/2, and T(n,k) = (k - (k + 1)*n + n^(k + 1))/(n^2 - 2*n + 1) elsewhere.
T(n,k) = third entry in the vector M^k * (1, 0, 0), where M is the following 3 X 3 matrix:
1, 0, 0
1, 1, 0
1, 1, n.
EXAMPLE
Square array begins:
n\k | 1 2 3 4 5 6 7 8 ...
-------------------------------------------------
0 | 1 2 3 4 5 6 7 8 ... A000027
1 | 1 3 6 10 15 21 28 36 ... A000217
2 | 1 4 11 26 57 120 247 502 ... A000295
3 | 1 5 18 58 179 543 1636 4916 ... A000340
4 | 1 6 27 112 453 1818 7279 29124 ... A014825
5 | 1 7 38 194 975 4881 24412 122068 ... A014827
6 | 1 8 51 310 1865 11196 67183 403106 ... A014829
7 | 1 9 66 466 3267 22875 160132 1120932 ... A014830
8 | 1 10 83 668 5349 42798 342391 2739136 ... A014831
...
PROG
(Maxima)
T(n, k) := if k = 1 then 1 else n*T(n, k - 1) + k$
create_list(T(n - k + 1, k), n, 0, 20, k, 1, n + 1);
/* Franck Maminirina Ramaharo, Jan 26 2019 */
CROSSREFS
KEYWORD
AUTHOR
Gary W. Adamson, Dec 30 2006
EXTENSIONS
Edited and name clarified by Franck Maminirina Ramaharo, Jan 26 2019
STATUS
approved