[go: up one dir, main page]

login
A126100
Number of rooted connected unlabeled graphs on n nodes.
6
0, 1, 1, 3, 11, 58, 407, 4306, 72489, 2111013, 111172234, 10798144310, 1944301471861, 650202565436890, 404697467417019634, 470133531223369393920, 1022561022228933341815171, 4177761667636803276899047351, 32163582481439081597751699343141, 468019937132164016636736323752098741
OFFSET
0,4
COMMENTS
Let G run through all connected unlabeled graphs on n nodes. Add up the numbers of inequivalent nodes (under Aut(G)) for each G.
"Pointed" connected graphs. This has the same relation to A001349 as A000081 does to A000055.
a(0) = 0 because the empty graph cannot be rooted.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..50 (terms 0..23 from David Applegate and N. J. A. Sloane)
FORMULA
The g.f. A(x) = x+x^2+3*x^3+11*x^4+... satisfies f(x) = 1 + A(x)*g(x), where f(x) = 1+x+2*x^2+6*x^3+20*x^4+... is the g.f. for A000666 and g(x) = 1+x+2*x^2+4*x^3+11*x^4+... is the g.f. for A000088. - Brendan McKay
EXAMPLE
For 3 nodes G is either a path (2 kinds of nodes) or a triangle (one kind of node), for a total of a(3) = 3.
For the 5-vertex graphs we have 2 * 1 orbit, 6 * 2 orbits, 8 * 3 orbits, 5 * 4 orbits for a total of 2 + 12 + 24 + 20 = 58.
MATHEMATICA
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
edges[v_] := Sum[GCD[v[[i]], v[[j]]], {i, 2, Length[v]}, {j, 1, i - 1}] + Total[Quotient[v, 2]];
g[n_, r_] := (s = 0; Do[s += permcount[p]*(2^(r*Length[p] + edges[p])), {p, IntegerPartitions[n]}]; s/n!);
seq[m_] := Sum[g[n-1, 1] x^(n-1), {n, 0, m}]/Sum[g[n-1, 0] x^(n-1), {n, 0, m}] + O[x]^m // CoefficientList[#, x]& // Prepend[#, 0]&;
seq[20] (* Jean-François Alcover, Jul 09 2018, after Andrew Howroyd *)
PROG
(PARI)
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)}
g(n, r) = {my(s=0); forpart(p=n, s+=permcount(p)*(2^(r*#p+edges(p)))); s/n!}
seq(n)={concat([0], Vec(Ser(vector(n, n, g(n-1, 1)))/Ser(vector(n, n, g(n-1, 0)))))} \\ Andrew Howroyd, May 03 2018
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
a(5)-a(9) computed by Gordon F. Royle, Mar 05 2007
a(10) and a(11) computed by Brendan McKay, Mar 05 2007
a(12) onwards computed from the generating function, A000088 and A000666 by David Applegate and N. J. A. Sloane, Mar 06 2007
STATUS
approved