[go: up one dir, main page]

login
A125961
Decimal expansion of e * sqrt(Pi) * erf(1).
2
4, 0, 6, 0, 1, 5, 6, 9, 3, 8, 5, 5, 7, 4, 0, 9, 9, 5, 1, 0, 7, 8, 1, 7, 9, 8, 5, 1, 3, 3, 1, 9, 0, 0, 8, 9, 7, 8, 6, 5, 1, 2, 9, 1, 7, 8, 6, 3, 6, 9, 4, 5, 0, 4, 9, 4, 6, 0, 3, 9, 0, 6, 8, 4, 7, 7, 2, 6, 3, 5, 0, 7, 9, 7, 8, 7, 7, 8, 1, 3, 8, 5, 3, 8, 9, 7, 6, 8, 6, 6, 0, 1, 6, 7, 1, 5, 3, 9, 8, 5
OFFSET
1,1
LINKS
J.-P. Allouche and T. Baruchel, Variations on an error sum function for the convergents of some powers of e, arXiv preprint arXiv:1408.2206 [math.NT], 2014.
FORMULA
Equals Sum_{k >= 1} (2^k / (2k-1)!!).
Equals Integral_{x=0..1} e^x dx/sqrt(1-x). - Amiram Eldar, Jul 04 2020
EXAMPLE
c = 4.06015693855740995107817985133190089786512917863694504946039...
MATHEMATICA
RealDigits[N[E Sqrt[Pi] Erf[1], 100]][[1]]
PROG
(MATLAB) exp(1)*sqrt(pi)*erf(1) \\ Altug Alkan, Nov 11 2015
(PARI) exp(1)*sqrt(Pi)*(1-erfc(1)) \\ Michel Marcus, Nov 11 2015
(PARI) vector(100, n, if(n<1, 0, default(realprecision, n+2); floor((exp(1)*sqrt(Pi)*(1-erfc(1)))*10^(n-1))%10)) \\ Altug Alkan, Nov 11 2015
CROSSREFS
Sequence in context: A056141 A246004 A103688 * A016681 A210625 A210615
KEYWORD
cons,nonn
AUTHOR
Fredrik Johansson, Feb 06 2007
STATUS
approved