[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125574
Primes p=prime(i) of level (1,14), i.e., such that A118534(i)=prime(i-14).
5
31515413, 69730637, 132102911, 132375259, 215483129, 284491367, 325689253, 388190689, 548369603, 620829113, 633418787, 638213603, 670216277, 793852487, 797759539, 960200149, 1038197399, 1050359137, 1092920249, 1331713301, 1342954871, 1349496367, 1365964199
OFFSET
1,1
COMMENTS
This subsequence of A125830 and of A162174 gives primes of level (1,14): If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
LINKS
EXAMPLE
prime(15456800) - prime(15456799) = 284491601 - 284491367 = 284491367 - 284491133 = prime(15456799) - prime(15456799-14) and prime(15456799) has level 1 in A117563, so prime(15456799) = 284491367 has level (1,14).
PROG
(PARI) lista(nn) = my(c=15, v=primes(15)); forprime(p=53, nn, if(2*v[c]-p==v[c=c%15+1], print1(precprime(p-1), ", ")); v[c]=p); \\ Jinyuan Wang, Jun 18 2021
CROSSREFS
Cf. A117078, A117563, A006562 (primes of level (1,1)), A117876, A118464, A118467, A119402, A119403, A119404.
Sequence in context: A182088 A209786 A251530 * A215414 A151621 A052097
KEYWORD
nonn
AUTHOR
EXTENSIONS
Definition and comment reworded following suggestions from the authors. - M. F. Hasler, Nov 30 2009
STATUS
approved