[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125220
Numbers k such that binomial(3k, k) - 1 is prime.
7
1, 3, 7, 11, 49, 88, 93, 196, 216, 519, 655, 722, 858, 905, 991, 1654, 2277, 3275, 4214, 5047, 5924, 7359, 7953, 11188, 13286, 14626, 14687, 34365, 36014
OFFSET
1,2
MATHEMATICA
Do[f=Binomial[3n, n]-1; If[PrimeQ[f], Print[n]], {n, 1, 1000}]
Select[Range[4300], PrimeQ[Binomial[3#, #]-1]&] (* Harvey P. Dale, Aug 24 2017 *)
PROG
(PARI) is(n)=binomial(3*n, n)-1 \\ Charles R Greathouse IV, Feb 17 2017
CROSSREFS
Cf. A125221 (binomial(3k, k) + 1 is prime).
Cf. A066699 (binomial(2k, k) + 1 is prime).
Cf. A066726 (binomial(2k, k) - 1 is prime).
Sequence in context: A358311 A217383 A005372 * A016081 A287301 A105762
KEYWORD
hard,more,nonn
AUTHOR
Alexander Adamchuk, Nov 25 2006
EXTENSIONS
a(16)-a(19) from Robert G. Wilson v, Nov 26 2006
a(20)-a(29) from Robert Price, Apr 23 2019
STATUS
approved