[go: up one dir, main page]

login
A124899
Sierpinski quotient ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
4
1, 7, 521, 102943, 38742049, 23775972551, 21633936185161, 27368368148803711, 45957792327018709121, 98920982783015679456199, 265572137199362841880960201, 870019499993663001431459704607, 3416070845000481662841943594125601
OFFSET
1,2
COMMENTS
2n divides Sierpinski number A014566(2n-1).
2^n divides A014566(2^n-1); A014566(2^n - 1) / 2^n = A081216(2^n - 1) = A122000(n) = {1, 7, 102943, 27368368148803711, 533411691585101123706582594658103586126397951, ...}.
p+1 divides A014566(p) for prime p; A014566(p)/(p+1) = A056852(n) = {7, 521, 102943, 23775972551, 21633936185161, ...}.
Primes in this sequence are {7, 521, 45957792327018709121}.
LINKS
Eric Weisstein, World of Mathematics. Sierpinski Numbers of the First Kind.
FORMULA
a(n) = ((2n-1)^(2n-1) + 1)/(2n) = A014566(2n-1)/(2n).
(2n-1)^(a(n)-1) == 1 (mod a(n)). - Thomas Ordowski, Mar 16 2021
MAPLE
seq(((2*n-1)^(2*n-1)+1)/(2*n), n=1..20); # Muniru A Asiru, Apr 08 2018
MATHEMATICA
Table[((2n-1)^(2n-1)+1)/(2n), {n, 1, 20}]
PROG
(GAP) List([1..15], n->((2*n-1)^(2*n-1)+1)/(2*n)); # Muniru A Asiru, Apr 08 2018
(PARI) a(n) = ((2*n-1)^(2*n-1) + 1)/(2*n); \\ Michel Marcus, Apr 08 2018
CROSSREFS
Cf. A014566 (Sierpinski numbers of the first kind: n^n + 1).
Sequence in context: A320980 A080975 A003396 * A056852 A316394 A300391
KEYWORD
nonn
AUTHOR
Alexander Adamchuk, Nov 12 2006
STATUS
approved