[go: up one dir, main page]

login
A124829
Table of exponents of prime factorizations in A055932.
6
1, 2, 1, 1, 3, 2, 1, 4, 1, 2, 3, 1, 1, 1, 1, 5, 2, 2, 4, 1, 1, 3, 2, 1, 1, 6, 3, 2, 1, 2, 1, 5, 1, 2, 3, 3, 1, 1, 7, 4, 2, 1, 1, 2, 1, 4, 2, 2, 1, 6, 1, 1, 1, 1, 1, 3, 3, 4, 1, 1, 8, 1, 3, 1, 5, 2, 2, 1, 2, 2, 4, 3, 2, 1, 7, 1, 2, 1, 1, 1, 4, 3, 1, 2, 2, 5, 1, 1, 1, 5, 9, 2, 3, 1, 6, 2, 3, 1, 2, 1, 2, 1, 1, 3, 4
OFFSET
1,2
COMMENTS
This is an enumeration of all compositions. This sequence contains all finite sequences of positive integers.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10382 (rows 1 <= n <= 2500).
FORMULA
A055932(n) = Product_k Prime(k)^T(n,k).
EXAMPLE
From Michael De Vlieger, Feb 06 2020: (Start)
Table begins:
n A055932(n+1) row n
---------------------
1 2 1;
2 4 2;
3 6 1, 1;
4 8 3;
5 12 2, 1;
6 16 4;
7 18 1, 2;
8 24 3, 1;
9 30 1, 1, 1;
10 32 5;
11 36 2, 2;
12 48 4, 1;
13 54 1, 3;
14 60 2, 1, 1;
15 64 6;
... (End)
MATHEMATICA
Map[FactorInteger[#][[All, -1]] &, Select[Range[10^3], Last[#] == Length[#] &@ PrimePi@ FactorInteger[#][[All, 1]] &]] // Flatten (* Michael De Vlieger, Feb 06 2020 *)
CROSSREFS
Cf. A055932, A124830 (row lengths), A124831 (row sums), A124832, A066099.
Sequence in context: A355534 A296150 A079673 * A093394 A094363 A124832
KEYWORD
nonn,tabf
AUTHOR
STATUS
approved