[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124753
a(3n+k) = (k+1)*binomial(4n+k, n)/(3n+k+1), where k is n reduced mod 3.
5
1, 1, 1, 1, 2, 3, 4, 9, 15, 22, 52, 91, 140, 340, 612, 969, 2394, 4389, 7084, 17710, 32890, 53820, 135720, 254475, 420732, 1068012, 2017356, 3362260, 8579560, 16301164, 27343888, 70068713, 133767543, 225568798, 580034052
OFFSET
0,5
COMMENTS
Row sums of Riordan array (1,x(1-x^3))^(-1). Also row sums of A124752.
a(n) is the number of ordered trees (A000108) with n vertices in which every non-leaf non-root vertex has exactly two children that are leaves. For example, a(4) counts the 2 trees \ /
| and \|/ . - David Callan, Aug 22 2014
FORMULA
a(3n) = A002293(n), a(3n+1) = A069271(n), a(3n+2) = A006632(n).
a(n) = ((mod(n,3)+1)*C(4*floor(n/3)+mod(n,3), floor(n/3))/ (3*floor(n/3) + 1 + mod(n, 3))). - Paul Barry, Dec 14 2006
G.f. satisfies: A(x) = 1 + x*A(x)^2*A(w*x)*A(w^2*x), where w = exp(2*Pi*I/3). - Paul D. Hanna, Jun 04 2012
G.f. satisfies: A(x) = 1 + x*A(x)*G(x^3) where G(x) = 1 + x*G(x)^4 is the g.f. of A002293. - Paul D. Hanna, Jun 04 2012
Conjecture: +8019*n*(n-1)*(n+1)*a(n) +17496*n*(n-1)*(n-3)*a(n-1) +2592*(3*n-5)*(n-1)*(3*n-16)*a(n-2) +216*(-224*n^3+48*n^2+3926*n-6331)*a(n-3) +576*(-288*n^3+2448*n^2-6558*n+5443)*a(n-4) +768*(-288*n^3+3600*n^2-14878*n+20375)*a(n-5) -8192*(4*n-23)*(2*n-11)*(4*n-21)*a(n-6)=0. - R. J. Mathar, Oct 30 2014
MAPLE
A124753 := proc(n)
local k, np;
k := modp(n, 3) ;
np := floor(n/3) ;
(k+1)*binomial(np+n, np)/(n+1) ;
end proc:
seq(A124753(n), n=0..40) ; # R. J. Mathar, Oct 30 2014
MATHEMATICA
a[n_] := Module[{q, k}, {q, k} = QuotientRemainder[n, 3]; (k+1)*Binomial[4q + k, q]/(3q + k + 1)];
Table[a[n], {n, 0, 34}] (* Jean-François Alcover, Nov 20 2017 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+x*A*exp(sum(m=1, n\3, 3*polcoeff(log(A+x*O(x^n)), 3*m)*x^(3*m))+x*O(x^n))); polcoeff(A, n)} \\ Paul D. Hanna, Jun 04 2012
CROSSREFS
Cf. A084080, A118968, A002293, A069271 (trisection), A006632 (trisection).
Sequence in context: A033076 A121431 A084080 * A248647 A284437 A049909
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Nov 06 2006
STATUS
approved