[go: up one dir, main page]

login
A124049
a(n) = c is least number such that 10^n/2 -/+ c are primes.
2
0, 3, 9, 81, 123, 57, 87, 243, 69, 63, 189, 231, 1569, 381, 231, 1443, 1113, 321, 339, 1353, 363, 519, 1323, 1503, 741, 1221, 957, 1053, 339, 5931, 2121, 2301, 2031, 4773, 4737, 10281, 1317, 129, 3873, 1443, 387, 11769, 8271, 5337, 2883, 7137, 8193, 8493
OFFSET
1,2
COMMENTS
Related to Goldbach pairs of 10^n: a(n)=10^n/2 -A124450(n) Lesser of pair of closest primes whose sum is 10^n. Cf. A124013 Lesser of pair of most widely separated primes whose sum is 10^n, A065577 Number of Goldbach partitions of 10^n
All terms are divisible by 3 - see A108163.
EXAMPLE
Next terms up to n = 101: 14637, 9897,
6471, 183, 8043, 6921,6699, 29127, 3663, 12537, 3777,
6741, 2253, 561, 3783, 26979, 16491, 6543, 10683,
1749, 6417, 38871, 22767, 62403, 8631, 4497, 20739,
453, 16731, 25293, 4341, 37467,
55323,4587,37083,24717,6687,8763,22551,29367,37881,14301,8637,34101,22179,26811,7059,1647
MATHEMATICA
lnc[n_]:=Module[{c=0, t=10^n/2}, While[!AllTrue[t+{c, -c}, PrimeQ], c++]; c]; Array[ lnc, 50] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 21 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Hans Havermann and Zak Seidov, Nov 03 2006
STATUS
approved