Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Oct 27 2024 05:00:10
%S 1,5,44,1266,72636,6652810,889574412,163459302788,39520825344016,
%T 12164510040883218,4644631106520877974,2154334728240414720022,
%U 1193170003333152768100020,777776389315596583864343748
%N Number of non-equivalent (2n+1)-fold branched coverings of the Klein bottle with one cyclic branch point.
%C No such covering of even multiplicity exists.
%D J. H. Kwak, A. Mednykh and V. Liskovets, Enumeration of branched coverings of nonorientable surfaces with cyclic branch points, SIAM J. Discrete Math., Vol. 19, No. 2 (2005), 388-398.
%F a(n)=2*sum_{k|(2n+1)}k!*((2n+1)/k)^(k-1)*phi((2n+1)/k)/(k+1) where phi(n) is the Euler function A000010.
%F a(n) ~ sqrt(Pi) * 2^(2*n + 2) * n^(2*n + 1/2) / exp(2*n). - _Vaclav Kotesovec_, Oct 27 2024
%t Table[2*Sum[k!*((2*n + 1)/k)^(k-1) * EulerPhi[(2*n + 1)/k] / (k+1), {k, Divisors[2*n + 1]}], {n, 0, 20}] (* _Vaclav Kotesovec_, Oct 27 2024 *)
%Y Cf. A113947, A113950.
%K nonn
%O 0,2
%A _Valery A. Liskovets_, Nov 10 2005