[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A113544
Numbers simultaneously pentagon-free, squarefree and triangle-free.
2
1, 2, 7, 11, 13, 14, 17, 19, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 77, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 119, 122, 127, 131, 133, 134, 137, 139, 142, 143, 146, 149, 151, 157, 158, 161, 163
OFFSET
1,2
REFERENCES
Bellman, R. and Shapiro, H. N. "The Distribution of Squarefree Integers in Small Intervals." Duke Math. J. 21, 629-637, 1954.
Borwein, J. and Bailey, D. Mathematics by Experiment: Plausible Reasoning in the 21st Century. Natick, MA: A. K. Peters, 2003.
Hardy, G. H. and Wright, E. M. "The Number of Squarefree Numbers." Section 18.6 in An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, pp. 269-270, 1979.
LINKS
G. C. Greubel and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 1000 terms from Greubel)
Eric Weisstein's World of Mathematics, Squarefree.
FORMULA
a(n) has no factor >1 of form a*(a+1)/2 nor b^2 nor c*(3*c-1)/2. A005117 INTERSECTION A112886 INTERSECTION A113508.
MATHEMATICA
bad = Rest@ Union[# (# + 1)/2 &@ Range[19], Range[14]^2, # (3 # - 1)/2 &@ Range[11]]; Select[Range[200], {} == Intersection[bad, Divisors[#]] &] (* Giovanni Resta, Jun 13 2016 *)
PROG
(PARI) list(lim)=my(v=List()); forsquarefree(n=1, lim\1, fordiv(n, d, if((ispolygonal(d, 3) || ispolygonal(d, 5)) && d>1, next(2))); listput(v, n[1])); Vec(v); \\ Charles R Greathouse IV, Dec 24 2018
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jan 13 2006
EXTENSIONS
Corrected and extended by Giovanni Resta, Jun 13 2016
STATUS
approved