[go: up one dir, main page]

login
A113468
Least number k such that k, k+n, k+2*n and k+3*n have the same number of divisors.
2
242, 213, 3445, 111, 8718, 5, 2001, 69, 3526, 299, 1074, 5, 2222, 537, 9177, 129, 4114, 5, 8, 598, 7843, 111, 1235, 10, 2984, 303, 3538, 417, 987, 7, 1771, 91, 7659, 57, 9269, 10, 2264, 145, 1197, 219, 1606, 5, 1826, 115, 8897, 203, 618, 5, 8, 159, 2673, 183
OFFSET
1,1
COMMENTS
Fourth row of A113465.
LINKS
EXAMPLE
a(19) = 8 because 8, 8 + 19 = 27, 8 + 2*19 = 46 and 8 + 3*19 = 65 each have 4 divisors.
MATHEMATICA
a[n_] := Module[{k = 1, d}, While[(d = DivisorSigma[0, k]) != DivisorSigma[0, k+n] || DivisorSigma[0, k+2*n] != d || DivisorSigma[0, k+3*n] != d, k++]; k]; Array[a, 60] (* Amiram Eldar, Aug 04 2024 *)
PROG
(PARI) a(n) = {my(k = 1, d); while((d = numdiv(k)) != numdiv(k+n) || numdiv(k+2*n) != d || numdiv(k+3*n) != d, k++); k; } \\ Amiram Eldar, Aug 04 2024
CROSSREFS
Cf. A113465.
Sequence in context: A171242 A259092 A060110 * A220089 A039665 A259719
KEYWORD
nonn
AUTHOR
David Wasserman, Jan 08 2006
EXTENSIONS
Name corrected by Amiram Eldar, Aug 04 2024
STATUS
approved