[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A112202
McKay-Thompson series of class 60d for the Monster group.
1
1, -1, -1, 0, 0, 0, 0, -1, 0, -1, 0, -1, -1, 0, 0, 1, 0, -1, 0, -1, 1, -1, -2, 0, -1, 1, -1, -1, 0, -1, 2, -2, -3, 0, 0, 1, -1, -3, 0, -2, 2, -3, -4, 0, -1, 3, -2, -4, 0, -2, 3, -4, -6, 0, -2, 3, -3, -5, 0, -3, 6, -6, -9, 0, -2, 4, -4, -9, 0, -5, 6, -8, -11, 0, -3, 8, -6, -12, 0, -6, 9, -10, -16, 0, -6, 9, -9, -15, 0, -8, 14, -15, -22, 0, -6, 12, -11
OFFSET
0,23
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of sqrt((-8 - T15b(q) - T15b(q^2) + T15b(q)*T15b(q^2))/(5 + T15b(q) + T15b(q^2))) in powers of q, where T15b(q) = A058513. - G. C. Greubel, Jul 02 2018
EXAMPLE
T60d = 1/q -q -q^3 -q^13 -q^17 -q^21 -q^23 +q^29 -q^33 -q^37 +...
MATHEMATICA
eta[q_] := q^(1/24)*QPochhammer[q]; nmax = 100; B:= (eta[q]/eta[q^25]); d:= q*(eta[q^3]/eta[q^15])^2; c:= (eta[q^3]*eta[q^5]/(eta[q]* eta[q^15]))^3; T25A := B + 5/B; A:= (eta[q^3]/eta[q^75]); T15b:= Simplify[2 + (-5 + T25A*(A + 5/A))*(-B + A)*(1/(A*B))^2*(d^3/c)/q^3, q>0]; T60d:= CoefficientList[Series[(q*((-8 - T15b - (T15b /. {q -> q^2}) + T15b*(T15b /. {q -> q^2}))/(5 + T15b + (T15b /. {q -> q^2}))) + O[q]^nmax)^(1/2), {q, 0, nmax}], q]; Table[T60d[[n]], {n, 1, nmax}] (* G. C. Greubel, Jul 02 2018 *)
CROSSREFS
Sequence in context: A233323 A115381 A115382 * A126205 A025913 A123230
KEYWORD
sign
AUTHOR
Michael Somos, Aug 28 2005
STATUS
approved