[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A111375
Let qf(a,q) = Product(1-a*q^j,j=0..infinity); g.f. is qf(q,q^7)*qf(q^2,q^7)*qf(q^4,q^7)/(qf(q^3,q^7)*qf(q^5,q^7)*qf(q^6,q^7)).
2
1, -1, -1, 2, -2, 1, 3, -5, 0, 3, -1, 0, 3, -2, -8, 9, 1, -7, 10, -6, -5, 3, 3, 3, -6, 9, -9, -8, 10, 2, 8, -13, 6, -7, -17, 34, -1, -10, -5, 2, -8, -11, 50, -20, -21, 16, -16, -5, 5, 56, -37, -31, 35, -40, 12, 29, 40, -56, -40, 62, -58, 29, 52, 11, -73, -41, 99, -98, 56, 98, -66, -73, -24, 114, -120, 100, 125, -179, -33, -10, 117, -111
OFFSET
0,4
COMMENTS
Suggested by A003823.
MAPLE
M:=100; qf:=(a, q)->mul(1-a*q^j, j=0..M); t7:=qf(q, q^7)*qf(q^2, q^7)*qf(q^4, q^7)/(qf(q^3, q^7)*qf(q^5, q^7)*qf(q^6, q^7)); series(%, q, M); seriestolist(%);
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 09 2005
STATUS
approved