[go: up one dir, main page]

login
A111127
Triangle read by rows: T(k,s)=(2k-1)(2k+1)binomial(2k-s-1,2k-2s-1)/(2k-2s+1); k>=1, 0<=s<=k-1.
1
1, 3, 10, 5, 28, 35, 7, 54, 126, 84, 9, 88, 297, 396, 165, 11, 130, 572, 1144, 1001, 286, 13, 180, 975, 2600, 3510, 2184, 455, 15, 238, 1530, 5100, 9350, 9180, 4284, 680, 17, 304, 2261, 9044, 20995, 28424, 21318, 7752, 969, 19, 378, 3192, 14896, 41895, 72618
OFFSET
1,2
LINKS
K. Dilcher and K. B. Stolarsky, A Pascal-type triangle characterizing twin primes, Amer. Math. Monthly, 112 (2005), 673-681.
EXAMPLE
Triangle starts:
1;
3,10;
5,28,35;
7,54,126,84;
9,88,297,396,165;
MAPLE
T:=(k, s)->binomial(2*k-s-1, 2*k-2*s-1)*(2*k-1)*(2*k+1)/(2*k-2*s+1): for k from 1 to 10 do seq(T(k, s), s=0..k-1) od; # yields sequence in triangular form; Emeric Deutsch, Feb 02 2006
CROSSREFS
Mirror image of A111126.
Sequence in context: A033478 A285576 A246777 * A140948 A328763 A281174
KEYWORD
nonn,easy,tabl
AUTHOR
N. J. A. Sloane, Oct 16 2005
EXTENSIONS
More terms from Emeric Deutsch, Feb 02 2006
STATUS
approved