[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110905
a(n) is the least number k such that k*prime(n)# - 1 is prime and (k*prime(n)# - 1)^2 - 2 is a Chen prime.
0
2, 1, 1, 11, 1, 6, 41, 17, 8, 13, 14, 107, 84, 23, 4, 101, 13, 89, 211, 58, 83, 75, 260, 414, 35, 39, 871, 79, 27, 42, 915, 44, 349, 142, 249, 404, 140, 84, 1068, 693, 972, 236, 1571, 1200, 298, 423, 970, 183, 173, 659, 523, 645, 1596, 448, 40, 201, 195, 1859, 427, 1732
OFFSET
1,1
EXAMPLE
2*2-1 = 3, (2*2-1)^2-2 = 7, 3 and 7 are primes, so a(1) = 2.
11*2*3*5*7-1 = 2309, (11*2*3*5*7-1)^2-2 = 5331479, 2309 and 5331479 are primes, so a(4) = 11.
MATHEMATICA
chenQ[n_] := PrimeQ[n] && PrimeOmega[n+2] <= 2; a[n_] := Module[{p = Product[Prime[i], {i, 1, n}], k = 0}, While[!PrimeQ[k*p - 1] || !chenQ[(k*p-1)^2-2], k++]; k]; Array[a, 60] (* Amiram Eldar, Sep 11 2021 *)
PROG
(PARI) isok(k, q) = if (isprime(k*q-1), my(c=(k*q-1)^2-2); (isprime(c) && (bigomega(c+2)<=2)));
a(n) = my(k=1, q=prod(i=1, n, prime(i))); while (!isok(k, q), k++); k; \\ Michel Marcus, Sep 11 2021
CROSSREFS
Sequence in context: A370950 A260950 A372960 * A205447 A297544 A297802
KEYWORD
nonn
AUTHOR
Pierre CAMI, Sep 21 2005
STATUS
approved