[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110622
n^2 followed by n followed by n^3 followed by n^4.
2
1, 1, 1, 1, 4, 2, 8, 16, 9, 3, 27, 81, 16, 4, 64, 256, 25, 5, 125, 625, 36, 6, 216, 1296, 49, 7, 343, 2401, 64, 8, 512, 4096, 81, 9, 729, 6561, 100, 10, 1000, 10000, 121, 11, 1331, 14641, 144, 12, 1728, 20736, 169, 13, 2197, 28561, 196, 14, 2744, 38416, 225, 15
OFFSET
1,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,5,0,0,0,-10,0,0,0,10,0,0,0,-5,0,0,0,1).
FORMULA
a(n) = 5*a(n-4) - 10*a(n-8) + 10*a(n-12) - 5*a(n-16) + a(n-20).
G.f.: -x*(1 + x + x^2 + x^3 - x^4 - 3*x^5 + 3*x^6 + 11*x^7 - x^8 + 3*x^9 - 3*x^10 + 11*x^11 + x^12 - x^13 - x^14 + x^15) / ( (x-1)^5*(1+x)^5*(x^2+1)^5 ). - R. J. Mathar, Dec 20 2010
a(n) = (2*n + 3 - (-1)^n + 2*(-1)^((2*n + 5 - (-1)^n)/4))*(n^3 + 4*n^2 + 24*n + 116 + (n^3 - 4*n^2 - 24*n + 12)*(-1)^n - (n^3 + 4*n^2 - 8*n - 108)*(-1)^((2*n + 5 - (-1)^n)/4) + (n^3 - 4*n^2 + 8*n - 20)*(-1)^((2*n + 7 + (-1)^n)/4))/2048. - Luce ETIENNE, Sep 02 2016
MATHEMATICA
Flatten[Table[{n^2, n, n^3, n^4}, {n, 40}]] (* Vincenzo Librandi, Nov 25 2012 *)
PROG
(Magma) &cat[[n^2, n, n^3, n^4]: n in [1..20]]; // Vincenzo Librandi, Nov 25 2012
(PARI) lista(nn) = for(n=1, nn, print1(n^2, ", ", n, ", ", n^3, ", "n^4, ", ")); \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohammad K. Azarian, Sep 14 2005
STATUS
approved