[go: up one dir, main page]

login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A110567
a(n) = n^(n+1) + 1.
7
1, 2, 9, 82, 1025, 15626, 279937, 5764802, 134217729, 3486784402, 100000000001, 3138428376722, 106993205379073, 3937376385699290, 155568095557812225, 6568408355712890626, 295147905179352825857, 14063084452067724991010
OFFSET
0,2
COMMENTS
For n >= 2, a(n) = the n-th positive integer such that a(n) (base n) has a block of exactly n consecutive zeros.
Comments from Alexander Adamchuk, Nov 12 2006 (Start)
(2n+1)^2 divides a(2n). a(2n)/(2n+1)^2 = {1,1,41,5713,1657009,826446281,633095889817,691413758034721,...} = A081215(2n).
p divides a(p-1) for prime p. a(p-1)/p = {1,3,205,39991,9090909091,8230246567621,...} = A081209(p-1) = A076951(p-1).
p^2 divides a(p-1) for an odd prime p. a(p-1)/p^2 = {1,41,5713,826446281,633095889817,1021273028302258913,1961870762757168078553, 14199269001914612973017444081,...} = A081215(p-1).
Prime p divides a((p-3)/2) for p = {13,17,19,23,37,41,43,47,61,67,71,89, 109,113,137,139,157,163,167,181,191,...}.
Prime p divides a((p-5)/4) for p = {29,41,61,89,229,241,281,349,421,509,601,641,661,701,709,769,809,821,881,...} = A107218(n) Primes of the form 4x^2+25y^2.
Prime p divides a((p-7)/6) for p = {79,109,127,151,313,421,541,601,613,751,757,787,...}.
Prime p divides a((p-9)/8) for p = {41,337,401,521,569,577,601,857,929,937,953,977,...} A subset of A007519(n) Primes of form 8n+1.
Prime p divides a((p-11)/10) for p = {41,181,331,601,761,1021,1151,1231,1801,...}.
Prime p divides a((p-13)/12) for p = {313,337,433,1621,1873,1993,2161,2677,2833,...}. (End)
LINKS
FORMULA
a(n) = A007778(n) + 1.
a(n) = A110567(n) for n > 1. - Georg Fischer, Oct 20 2018
EXAMPLE
Examples illustrating the Comment:
a(2) = 9 because the first positive integer (base 2) with a block of 2 consecutive zeros is 100 (base 2) = 4, and the 2nd is 1001 (base 2) = 9 = 1 + 2^3.
a(3) = 82 because the first positive integer (base 3) with a block of 3 consecutive zeros is 1000 (base 3) = 81, the 2nd is 2000 (base 3) = 54 and the 3rd is 10001 (base 3) = 82 = 1 + 3^4.
a(4) = 1025 because the first positive integer (base 4) with a block of 4 consecutive zeros is 10000 (base 4) = 256, the 2nd is 20000 (base 4) = 512, the 3rd is 30000 (base 4) = 768 and the 4th 100001 (base 4) = 1025 = 1 + 4^5. and the 2nd is 1001 (base 2) = 9 = 1 + 2^3.
MATHEMATICA
Table[n^(n+1)+1, {n, 0, 30}] (* Harvey P. Dale, Oct 30 2015 *)
PROG
(PARI) for(n=0, 25, print1(1 + n^(n+1), ", ")) \\ G. C. Greubel, Aug 31 2017
(Magma) [n^(n+1) + 1: n in [0..25]]; // G. C. Greubel, Oct 16 2017
CROSSREFS
Cf. A007778: n^(n+1); A000312: n^n; A014566: Sierpinski numbers of the first kind: n^n + 1.
Sequence in context: A301861 A112670 A117581 * A123570 A006040 A067309
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Sep 12 2005
EXTENSIONS
Entry revised by N. J. A. Sloane, Oct 20 2018 at the suggestion of Georg Fischer.
STATUS
approved